Zhen-Ming Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of osmosensing OSCA1 Ca ²⁺ channel family coincident with plant transition from water to land. Plant Genome, 2022, 15, e20198.	1.6	5
2	OSCA1 is an osmotic specific sensor: a method to distinguish Ca ²⁺ â€mediated osmotic and ionic perception. New Phytologist, 2022, 235, 1665-1678.	3.5	10
3	Genome-wide identification and transcriptomic data exploring of the cytochrome P450 family in Chinese cabbage (<i>Brassica rapa</i> L. ssp. <i>pekinensis</i>). Journal of Plant Interactions, 2021, 16, 136-155.	1.0	4
4	Plant "helper―immune receptors are Ca ²⁺ -permeable nonselective cation channels. Science, 2021, 373, 420-425.	6.0	217
5	Flg22â€induced Ca ²⁺ increases undergo desensitization and resensitization. Plant, Cell and Environment, 2021, 44, 3793-3805.	2.8	11
6	Osmotic stress alters circadian cytosolic Ca ²⁺ oscillations and OSCA1 is required in circadian gated stress adaptation. Plant Signaling and Behavior, 2020, 15, 1836883.	1.2	20
7	Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 2020, 578, 577-581.	13.7	334
8	Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572, 341-346.	13.7	341
9	Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants. ACS Applied Materials & Interfaces, 2019, 11, 7743-7754.	4.0	42
10	Both NaCl and H2O2 Long-Term Stresses Affect Basal Cytosolic Ca2+ Levels but Only NaCl Alters Cytosolic Ca2+ Signatures in Arabidopsis. Frontiers in Plant Science, 2018, 9, 1390.	1.7	5
11	GSK2193874 treatment at heatstroke onset reduced cell apoptosis in heatstroke mice. Cellular and Molecular Biology, 2018, 64, 36-42.	0.3	2
12	Sustenance of endothelial cell stability in septic mice through appropriate activation of transient receptor potential vanilloid-4. Cellular and Molecular Biology, 2018, 64, 80-85.	0.3	1
13	Sensors Make Sense of Signaling. Plant and Cell Physiology, 2017, 58, 1121-1125.	1.5	6
14	The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana. Biologia (Poland), 2017, 72, 1140-1146.	0.8	27
15	Biotic and Abiotic Stresses Activate Different Ca2+ Permeable Channels in Arabidopsis. Frontiers in Plant Science, 2017, 8, 83.	1.7	41
16	L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Reports, 2016, 17, 2553-2561.	2.9	71
17	Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biology, 2015, 15, 261.	1.6	78
18	Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Research, 2014, 42, 8243-8257.	6.5	148

Zhen-Ming Pei

#	Article	IF	CITATIONS
19	OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514, 367-371.	13.7	590
20	Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant and Soil, 2014, 380, 285-303.	1.8	31
21	Cytokinins can act as suppressors of nitric oxide in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1548-1553.	3.3	108
22	Relationship between NaCl- and H2O2-Induced Cytosolic Ca2+ Increases in Response to Stress in Arabidopsis. PLoS ONE, 2013, 8, e76130.	1.1	28
23	Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method. PLoS ONE, 2013, 8, e66745.	1.1	61
24	Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. Journal of Experimental Botany, 2012, 63, 177-190.	2.4	103
25	Calcium and calcium receptor CAS promote <i>Arabidopsis thaliana</i> deâ€etiolation. Physiologia Plantarum, 2012, 144, 73-82.	2.6	30
26	Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition. Environmental Pollution, 2012, 160, 192-200.	3.7	23
27	Comparative Proteomic Analysis of Proteins in Response to Simulated Acid Rain in <i>Arabidopsis</i> . Journal of Proteome Research, 2011, 10, 2579-2589.	1.8	35
28	Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 2011, 31, 402-413.	1.4	52
29	The changes of nitric oxide production during the growth of Microcystis aerugrinosa. Environmental Pollution, 2011, 159, 3784-3792.	3.7	13
30	Effect of salinity on osmotic adjustment characteristics of Kandelia candel. Russian Journal of Plant Physiology, 2011, 58, 226-232.	0.5	8
31	Comparative proteomic analysis of differentially expressed proteins in βâ€aminobutyric acid enhanced <i>Arabidopsis thaliana</i> tolerance to simulated acid rain. Proteomics, 2011, 11, 2079-2094.	1.3	24
32	Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 2011, 62, 4481-4493.	2.4	317
33	Diurnal variation of nitric oxide emission flux from a mangrove wetland in Zhangjiang River Estuary, China. Estuarine, Coastal and Shelf Science, 2010, 90, 212-220.	0.9	27
34	Soil acidity reconstruction based on tree ring information of a dominant species Abies fabri in the subalpine forest ecosystems in southwest China. Environmental Pollution, 2010, 158, 3219-3224.	3.7	20
35	Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiology, 2010, 30, 1570-1585.	1.4	124
36	Microwave–assisted extraction and identification of polysaccharide from Lycoris aurea. Chemistry of Natural Compounds, 2009, 45, 474-477.	0.2	8

Zhen-Ming Pei

#	Article	IF	CITATIONS
37	Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove, Kandelia candel. Russian Journal of Plant Physiology, 2009, 56, 363-369.	0.5	11
38	Exploring the Mechanism of <i>Physcomitrella patens</i> Desiccation Tolerance through a Proteomic Strategy Â. Plant Physiology, 2009, 149, 1739-1750.	2.3	130
39	Coupling Diurnal Cytosolic Ca2+ Oscillations to the CAS-IP3 Pathway in Arabidopsis. Science, 2007, 315, 1423-1426.	6.0	167
40	Early ABA Signaling Events in Guard Cells. Journal of Plant Growth Regulation, 2005, 24, 296-307.	2.8	51
41	Nitric Oxide Represses the Arabidopsis Floral Transition. Science, 2004, 305, 1968-1971.	6.0	508
42	NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 2003, 22, 2623-2633.	3.5	1,474
43	A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature, 2003, 425, 196-200.	13.7	216
44	Abscisic Acid Activation of Plasma Membrane Ca ²⁺ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in <i>abi1-1</i> and <i>abi2-1</i> Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13, 2513-2523.	3.1	530
45	Abscisic Acid Activation of Plasma Membrane Ca2+ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in abi1-1 and abi2-1 Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13, 2513-2523.	3.1	151
46	Calcium channels activated by hydrogen peroxide mediate abscisic acidsignalling in guard cells. Nature, 2000, 406, 731-734.	13.7	1,938
47	Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles. Plant Physiology, 1999, 121, 977-986.	2.3	98
48	Role of Farnesyltransferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss. , 1998, 282, 287-290.		334
49	Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. Journal of Experimental Botany, 1998, 49, 319-328.	2.4	15
50	A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6548-6553.	3.3	28
51	Expression of a Cs + -Resistant Guard Cell K + Channel Confers Cs + -Resistant, Light-Induced Stomatal Opening in Transgenic Arabidopsis. Plant Cell, 1997, 9, 1843. 	3.1	37
52	Differential Abscisic Acid Regulation of Guard Cell Slow Anion Channels in Arabidopsis Wild-Type and abi1 and abi2 Mutants. Plant Cell, 1997, 9, 409.	3.1	84
53	Calcium Signals and Their Regulation. , 0, , 137-162.		0