Jinyong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886210/publications.pdf

Version: 2024-02-01

35 papers	1,632 citations	304368 22 h-index	377514 34 g-index
• •			
37 all docs	37 docs citations	37 times ranked	1270 citing authors

#	Article	IF	CITATIONS
1	Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environmental Science & Emp.; Technology, 2019, 53, 3718-3728.	4.6	297
2	Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science & Environmental	4.6	88
3	Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure–Reactivity Relationships and Environmental Implications. Environmental Science & Technology, 2020, 54, 2489-2499.	4.6	86
4	Enhanced Degradation of Perfluorocarboxylic Acids (PFCAs) by UV/Sulfite Treatment: Reaction Mechanisms and System Efficiencies at pH 12. Environmental Science and Technology Letters, 2020, 7, 351-357.	3.9	82
5	Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Applied Catalysis B: Environmental, 2017, 211, 188-198.	10.8	80
6	Near-Quantitative Defluorination of Perfluorinated and Fluorotelomer Carboxylates and Sulfonates with Integrated Oxidation and Reduction. Environmental Science & Environmental Science & 2021, 55, 7052-7062.	4.6	79
7	Microbial Cleavage of C–F Bonds in Two C ₆ Per- and Polyfluorinated Compounds via Reductive Defluorination. Environmental Science & Envir	4.6	73
8	Reductive Defluorination of Branched Per- and Polyfluoroalkyl Substances with Cobalt Complex Catalysts. Environmental Science and Technology Letters, 2018, 5, 289-294.	3.9	65
9	Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution, 2009, 157, 49-56.	3.7	64
10	Application of a Re–Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Research, 2013, 47, 91-101.	5. 3	62
11	Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environmental Science & Environm	4.6	59
12	Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 2017, 313, 745-752.	6.6	57
13	Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment. Water Research, 2019, 159, 30-37.	5 . 3	50
14	Bioinspired Complex-Nanoparticle Hybrid Catalyst System for Aqueous Perchlorate Reduction: Rhenium Speciation and Its Influence on Catalyst Activity. ACS Catalysis, 2015, 5, 511-522.	5 . 5	45
15	Adsorption of zwitterionic fluoroquinolone antibacterials to goethite: A charge distribution-multisite complexation model. Journal of Colloid and Interface Science, 2014, 428, 63-72.	5.0	42
16	Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. Environmental Science and Technology Letters, 2021, 8, 668-674.	3.9	38
17	High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environmental Pollution, 2020, 256, 113550.	3.7	33
18	Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. Environmental Science & Environmental Science	4.6	32

#	Article	IF	Citations
19	Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis. Inorganic Chemistry, 2016, 55, 2597-2611.	1.9	26
20	A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction. Journal of the American Chemical Society, 2021, 143, 7891-7896.	6.6	26
21	X-ray Spectroscopic Characterization of Immobilized Rhenium Species in Hydrated Rhenium–Palladium Bimetallic Catalysts Used for Perchlorate Water Treatment. Journal of Physical Chemistry C, 2014, 118, 11666-11676.	1.5	25
22	Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water. Environmental Science & Environmental Science & 2015, 49, 12932-12940.	4.6	22
23	Ruthenium Catalysts for the Reduction of $\langle i \rangle N \langle j \rangle$ -Nitrosamine Water Contaminants. Environmental Science & Environmenta	4.6	22
24	Catalytic Reduction of Aqueous Chlorate With MoO <i>_{<}</i> Immobilized on Pd/C. ACS Catalysis, 2020, 10, 8201-8211.	5 . 5	22
25	Interpretation of Reductive PFAS Defluorination with Quantum Chemical Parameters. Environmental Science and Technology Letters, 2021, 8, 645-650.	3.9	22
26	A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway. Environmental Science & Echnology, 2016, 50, 5874-5881.	4.6	21
27	Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	19
28	Electrocatalytic Perchlorate Reduction Using an Oxorhenium Complex Supported on a Ti ₄ O ₇ Reactive Electrochemical Membrane. Environmental Science & Environmental Science & Technology, 2022, 56, 3267-3276.	4.6	19
29	Simultaneous removal of iron, manganese, and ammonia enhanced by preloaded MnO2 on low-pressure ultrafiltration membrane. Journal of Membrane Science, 2022, 656, 120641.	4.1	16
30	Supported Palladium Catalysts: A Facile Preparation Method and Implications to Reductive Catalysis Technology for Water Treatment. ACS ES&T Engineering, 2021, 1, 562-570.	3.7	13
31	Ligand Design for Isomer-Selective Oxorhenium(V) Complex Synthesis. Inorganic Chemistry, 2017, 56, 1757-1769.	1.9	12
32	Defluorination of Omega-Hydroperfluorocarboxylates (i‰-HPFCAs): Distinct Reactivities from Perfluoro and Fluorotelomeric Carboxylates. Environmental Science & Technology, 2021, 55, 14146-14155.	4.6	12
33	Molybdenum-Catalyzed Perchlorate Reduction: Robustness, Challenges, and Solutions. ACS ES&T Engineering, 2022, 2, 181-188.	3.7	12
34	Bioinspired Catalytic Reduction of Aqueous Perchlorate by One Single-Metal Site with High Stability against Oxidative Deactivation. ACS Catalysis, 2021, 11, 6715-6725.	5 . 5	11
35	The First Attempt for Accounts of Environmental Chemistry and Technology Research. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	0