List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885778/publications.pdf Version: 2024-02-01

FSTHEDLKOK

#	Article	IF	CITATIONS
1	Assessment of the food safety issues related to genetically modified foods. Plant Journal, 2001, 27, 503-528.	5.7	454
2	Unintended effects and their detection in genetically modified crops. Food and Chemical Toxicology, 2004, 42, 1089-1125.	3.6	339
3	Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology, 2004, 42, 1157-1180.	3.6	274
4	Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnology Journal, 2010, 8, 436-451.	8.3	224
5	The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 2000, 78, 271-280.	3.8	197
6	Advances in DNA metabarcoding for food and wildlife forensic species identification. Analytical and Bioanalytical Chemistry, 2016, 408, 4615-4630.	3.7	180
7	Comparative safety assessment for biotech crops. Trends in Biotechnology, 2003, 21, 439-444.	9.3	144
8	Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Research, 2015, 24, 587-603.	2.4	124
9	Halal assurance in food supply chains: Verification of halal certificates using audits and laboratory analysis. Trends in Food Science and Technology, 2012, 27, 109-119.	15.1	112
10	Exploitation of molecular profiling techniques for GM food safety assessment. Current Opinion in Biotechnology, 2003, 14, 238-243.	6.6	111
11	PVY ^{NTN} elicits a diverse gene expression response in different potato genotypes in the first 12Ah after inoculation. Molecular Plant Pathology, 2009, 10, 263-275.	4.2	97
12	Comparative safety assessment of plant-derived foods. Regulatory Toxicology and Pharmacology, 2008, 50, 98-113.	2.7	89
13	Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. GigaScience, 2017, 6, 1-18.	6.4	75
14	Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Analytical and Bioanalytical Chemistry, 2014, 406, 2603-2611.	3.7	64
15	Substantial equivalence—an appropriate paradigm for the safety assessment of genetically modified foods?. Toxicology, 2002, 181-182, 427-431.	4.2	63
16	Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE). Archives of Toxicology, 2014, 88, 2289-2314.	4.2	55
17	Validation of the performance of a GMO multiplex screening assay based on microarray detection. European Food Research and Technology, 2008, 227, 1621-1632.	3.3	48
18	Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction. BMC Genomics, 2008, 9, 584.	2.8	47

#	Article	IF	CITATIONS
19	EU court casts new plant breeding techniques into regulatory limbo. Nature Biotechnology, 2018, 36, 799-800.	17.5	47
20	Transcriptome Analysis of Potato Tubersî— Effects of Different Agricultural Practices. Journal of Agricultural and Food Chemistry, 2009, 57, 1612-1623.	5.2	46
21	Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Analytical and Bioanalytical Chemistry, 2016, 408, 4595-4614.	3.7	43
22	Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms. Analytical and Bioanalytical Chemistry, 2011, 400, 1433-1442.	3.7	42
23	Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats. Archives of Toxicology, 2019, 93, 1095-1139.	4.2	40
24	Case studies on genetically modified organisms (GMOs): Potential risk scenarios and associated health indicators. Food and Chemical Toxicology, 2018, 117, 36-65.	3.6	37
25	The Identification and Interpretation of Differences in the Transcriptomes of Organically and Conventionally Grown Potato Tubers. Journal of Agricultural and Food Chemistry, 2012, 60, 2090-2101.	5.2	36
26	Plants with stacked genetically modified events: to assess or not to assess?. Trends in Biotechnology, 2014, 32, 70-73.	9.3	36
27	New EU legislation for risk assessment of GM food: no scientific justification for mandatory animal feeding trials. Plant Biotechnology Journal, 2013, 11, 781-784.	8.3	34
28	Timely awareness and prevention of emerging chemical and biochemical risks in foods: Proposal for a strategy based on experience with recent cases. Food and Chemical Toxicology, 2009, 47, 992-1008.	3.6	33
29	Practical Experiences with an Extended Screening Strategy for Genetically Modified Organisms (GMOs) in Real-Life Samples. Journal of Agricultural and Food Chemistry, 2013, 61, 9097-9109.	5.2	33
30	One-year oral toxicity study on a genetically modified maize MON810 variety in Wistar Han RCC rats (EU 7th Framework Programme project GRACE). Archives of Toxicology, 2016, 90, 2531-2562.	4.2	33
31	Traceability of genetically modified organisms. Expert Review of Molecular Diagnostics, 2002, 2, 69-77.	3.1	30
32	The European Union Court's Advocate General's Opinion and new plant breeding techniques. Nature Biotechnology, 2018, 36, 573-575.	17.5	30
33	DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 2016, 408, 4575-4593.	3.7	29
34	Gene-Edited Crops: Towards a Harmonized Safety Assessment. Trends in Biotechnology, 2019, 37, 443-447.	9.3	29
35	Regulation and exploitation of genetically modified crops. Nature Biotechnology, 2001, 19, 1105-1110.	17.5	28
36	Safety aspects of novel foods. Food Research International, 2002, 35, 267-271.	6.2	25

#	Article	IF	CITATIONS
37	DNA Methods: Critical Review of Innovative Approaches. Journal of AOAC INTERNATIONAL, 2002, 85, 797-800.	1.5	25
38	Changes in Gene and Protein Expression during Tomato Ripening — Consequences for the Safety Assessment of New Crop Plant Varieties. Food Science and Technology International, 2008, 14, 503-518.	2.2	23
39	A high-throughput method for GMO multi-detection using a microfluidic dynamic array. Analytical and Bioanalytical Chemistry, 2014, 406, 1397-1410.	3.7	23
40	Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of <i>Solanum tuberosum</i> L Journal of Agricultural and Food Chemistry, 2016, 64, 988-996.	5.2	23
41	Towards a multiplex cereal traceability tool using padlock probe ligation on genomic DNA. Food Chemistry, 2010, 118, 966-973.	8.2	22
42	Development of a multiplex DNA-based traceability tool for crop plant materials. Analytical and Bioanalytical Chemistry, 2012, 402, 693-701.	3.7	22
43	Evaluation of a Non-Targeted "Omic" Approach in the Safety Assessment of Genetically Modified Plants. Plant Biology, 2006, 8, 662-672.	3.8	21
44	Gene expression profiling for food safety assessment: Examples in potato and maize. Regulatory Toxicology and Pharmacology, 2010, 58, S21-S25.	2.7	20
45	Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier. Regulatory Toxicology and Pharmacology, 2014, 70, 297-303.	2.7	20
46	Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat. Food Control, 2017, 81, 9-15.	5.5	20
47	Authentication of Closely Related Fish and Derived Fish Products Using Tandem Mass Spectrometry and Spectral Library Matching. Journal of Agricultural and Food Chemistry, 2016, 64, 3669-3677.	5.2	19
48	NGS-based amplicon sequencing approach; towards a new era in GMO screening and detection. Food Control, 2018, 93, 201-210.	5.5	19
49	Selection of Reference Genes for Transcriptional Analysis of Edible Tubers of Potato (Solanum) Tj ETQq1 1 0.78	84314 rgBT 2.5	/Overlock 10
50	Increased efficacy for in-house validation of real-time PCR GMO detection methods. Analytical and Bioanalytical Chemistry, 2010, 396, 2213-2227.	3.7	18
51	The assessment of field trials in GMO research around the world and their possible integration in field trials for variety registration. Transgenic Research, 2018, 27, 321-329.	2.4	17
52	Toward on-site food authentication using nanopore sequencing. Food Chemistry: X, 2019, 2, 100035.	4.3	17
53	ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis. Scientific Reports, 2017, 7, 14155.	3.3	16
54	Surveying selected European feed and livestock production chains for features enabling the case-specific post-market monitoring of livestock for intake and potential health impacts of animal feeds derived from genetically modified crops. Food and Chemical Toxicology, 2018, 117, 66-78.	3.6	16

#	Article	IF	CITATIONS
55	Pollen-mediated gene flow in maize tested for coexistence of GM and non-GM crops in the Netherlands: effect of isolation distances between fields. Njas - Wageningen Journal of Life Sciences, 2009, 56, 405-423.	7.7	15
56	SIGMO: A decision support System for Identification of genetically modified food or feed products. Food Control, 2017, 71, 168-177.	5.5	15
57	Assessment of representational difference analysis (RDA) to construct informative cDNA microarrays for gene expression analysis of species with limited transcriptome information, using red and green tomatoes as a model. Journal of Plant Physiology, 2007, 164, 337-349.	3.5	14
58	Comparison and transfer testing of multiplex ligation detection methods for GM plants. BMC Biotechnology, 2012, 12, 4.	3.3	14
59	Semiautomated TaqMan PCR screening of GMO labelled samples for (unauthorised) GMOs. Analytical and Bioanalytical Chemistry, 2017, 409, 3877-3889.	3.7	14
60	A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4. Food Chemistry, 2016, 213, 536-544.	8.2	13
61	Exposure of livestock to GM feeds: Detectability and measurement. Food and Chemical Toxicology, 2018, 117, 13-35.	3.6	13
62	Use of omics analytical methods in the study of genetically modified maize varieties tested in 90â€ ⁻ days feeding trials. Food Chemistry, 2019, 292, 359-371.	8.2	13
63	Omics analyses of potato plant materials using an improved one-class classification tool to identify aberrant compositional profiles in risk assessment procedures. Food Chemistry, 2019, 292, 350-358.	8.2	12
64	Safety aspects of genetically modified crops with abiotic stress tolerance. Trends in Food Science and Technology, 2014, 40, 115-122.	15.1	11
65	Food and environmental safety assessment of new plant varieties after the European Court decision: Process-triggered or product-based?. Trends in Food Science and Technology, 2019, 88, 24-32.	15.1	10
66	Digital twins in agri-food : Societal and ethical themes and questions for further research. NJAS Impact in Agricultural and Life Sciences, 2021, 93, 98-125.	0.6	10
67	The application of multi-locus DNA metabarcoding in traditional medicines. Journal of Food Composition and Analysis, 2019, 79, 87-94.	3.9	9
68	Tuber proteome comparison of five potato varieties by principal component analysis. Journal of the Science of Food and Agriculture, 2016, 96, 3928-3936.	3.5	8
69	Application of the Safe-by-Design Concept in Crop Breeding Innovation. International Journal of Environmental Research and Public Health, 2020, 17, 6420.	2.6	8
70	Food safety assessment of marker genes in transgenic crops. Trends in Food Science and Technology, 1994, 5, 294-298.	15.1	7
71	Regulation and safety considerations of somatic cell nuclear transfer-cloned farm animals and their offspring used for food production. Theriogenology, 2019, 135, 85-93.	2.1	7
72	Novel food products from genetically modified plants: do they need additional food safety regulations?. Trends in Food Science and Technology, 1993, 4, 42-48.	15.1	6

#	Article	IF	CITATIONS
73	Traceability. , 2012, , 465-498.		5
74	Molecular Characterization and Event-Specific Real-Time PCR Detection of Two Dissimilar Groups of Genetically Modified Petunia (Petunia x hybrida) Sold on the Market. Frontiers in Plant Science, 2020, 11, 1047.	3.6	4
75	Proposed criteria for the evaluation of the scientific quality of mandatory rat and mouse feeding trials with whole food/feed derived from genetically modified plants. Archives of Toxicology, 2016, 90, 2287-2291.	4.2	3
76	Novel TaqMan PCR screening methods for element cry3A and construct gat/T-pinII to support detection of both known and unknown GMOs. European Food Research and Technology, 2017, 243, 481-488.	3.3	3
77	Data on screening and identification of genetically modified papaya in food supplements. Data in Brief, 2016, 9, 43-46.	1.0	2
78	The Development of DNA Based Methods for the Reliable and Efficient Identification ofNicotiana tabacumin Tobacco and Its Derived Products. International Journal of Analytical Chemistry, 2016, 2016, 1-6.	1.0	1
79	GMO Genetic Elements Thesaurus (GMO-GET): a controlled vocabulary for the consensus designation of introduced or modified genetic elements in genetically modified organisms. BMC Bioinformatics, 2021, 22, 48.	2.6	1
80	Safety of genetically modified (GM) crop ingredients in animal feed. , 2012, , 467-486.		0