Yuki Sugiura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885723/publications.pdf

Version: 2024-02-01

		687363	752698
50	535	13	20
papers	citations	h-index	g-index
F.0	50	F.0	212
50	50	50	313
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ag-substituted octacalcium phosphate blocks that exhibit high osteoconductivity and high antibacterial activity toward various pathogens. Materials Today Communications, 2022, 30, 103130.	1.9	7
2	Intercalated molecule releasing process of thiomalate substituted octacalcium phosphate crystals during phase conversion. Journal of Crystal Growth, 2022, 583, 126545.	1.5	3
3	Fabrication of interconnected porous Ag substituted octacalcium phosphate blocks based on a dissolution-precipitation reaction. Journal of Materials Science: Materials in Medicine, 2022, 33, .	3.6	O
4	Sodium and silver ionic competition for conjugated octacalcium phosphate sites in weak basic solutions. Journal of the Ceramic Society of Japan, 2022, 130, 363-369.	1.1	3
5	Fabrication of Octacalcium Phosphate Block through the Reaction between CaCO ₃ Powder and Phosphate Acid. Chemistry Letters, 2022, 51, 851-853.	1.3	2
6	Inorganic process for wet silica-doping of calcium phosphate. RSC Advances, 2021, 11, 12330-12335.	3.6	13
7	Crystal growth aspects of calcium carbonate polymorphism controlled by PO ₄ . Ganseki Kobutsu Kagaku, 2021, 50, 15-22.	0.1	O
8	Bone Mineral Analogue Ceramic Block as an Instant Adhesive to Biological Soft Tissue. Advanced Materials Interfaces, 2021, 8, 2002032.	3.7	4
9	Biomaterials: Bone Mineral Analogue Ceramic Block as an Instant Adhesive to Biological Soft Tissue (Adv. Mater. Interfaces 6/2021). Advanced Materials Interfaces, 2021, 8, 2170033.	3.7	O
10	Prediction of Sodium Substitution Sites in Octacalcium Phosphate: The Relationships of Ionic Pair Ratios in Reacting Solutions. Ceramics, 2021, 4, 240-248.	2.6	1
11	Specific roles of sodium for the formation process of manganese-substituted octacalcium phosphate. American Mineralogist, 2021, , .	1.9	O
12	MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. Journal of Radiation Research, 2021, 62, 782-792.	1.6	7
13	Multicolor imaging of calcium-binding proteins in human kidney stones for elucidating the effects of proteins on crystal growth. Scientific Reports, 2021, 11, 16841.	3.3	5
14	Fabrication of silver-doped apatite powders from silver-substituted octacalcium phosphate powders via solidâ€"solid phase-conversion process. Ceramics International, 2021, 47, 25614-25621.	4.8	6
15	Ammonium-to-sodium ion-exchange process at the interlayer of octacalcium phosphate. RSC Advances, 2021, 11, 39503-39507.	3.6	4
16	Biological responses of MC3T3-E1 on calcium carbonate coatings fabricated by hydrothermal reaction on titanium. Biomedical Materials (Bristol), 2020, 15, 035004.	3.3	8
17	Aesthetic Silver-Doped Octacalcium Phosphate Powders Exhibiting Both Contact Antibacterial Ability and Low Cytotoxicity. ACS Omega, 2020, 5, 24434-24444.	3.5	22
18	Influence of coexisting calcium ions during on-column phosphate adsorption and desorption with granular ferric oxide. Separation and Purification Technology, 2020, 249, 117143.	7.9	16

#	Article	IF	Citations
19	Phosphorus removal from model wastewater using lanthanum hydroxide microcapsules with poly(vinyl chloride) shells. Separation and Purification Technology, 2020, 241, 116707.	7.9	30
20	Fabrication of octacalcium phosphate foams with suitable mechanical strength for use as a bone substitute based on the setting reaction of acidic calcium phosphate granules. Journal of the Ceramic Society of Japan, 2020, 128, 962-969.	1.1	7
21	PO4 adsorption on the calcite surface modulates calcite formation and crystal size. American Mineralogist, 2019, 104, 1381-1388.	1.9	6
22	Tris(hydroxymethyl)aminomethane Substitution into Octacalcium Phosphate. Chemistry Letters, 2019, 48, 1304-1307.	1.3	10
23	Identification of Initial Colonizing Bacteria in Dental Plaques from Young Adults Using Full-Length $16S\mathrm{rRNA}$ Gene Sequencing. MSystems, $2019,4,.$	3.8	22
24	Ammonium inhibition of the intercalation of dicarboxylic acid molecules into octacalcium phosphate layer by substitution. Journal of Solid State Chemistry, 2019, 279, 120923.	2.9	9
25	Preparation and phosphate adsorptive properties of metal oxide-loaded granular activated carbon and pumice stone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123881.	4.7	16
26	Sodium inhibits the formation of ammonium-substituted solid solutions of octacalcium phosphate by filling its substitution site. Dalton Transactions, 2019, 48, 1386-1391.	3. 3	11
27	Effect of the Ionic Radius of Alkali Metal Ions on Octacalcium Phosphate Formation via Different Substitution Modes. Crystal Growth and Design, 2019, 19, 4162-4171.	3.0	37
28	Fabrication of pure octacalcium phosphate blocks from dicalcium hydrogen phosphate dihydrate blocks via a dissolution–precipitation reaction in a basic solution. Materials Letters, 2019, 239, 143-146.	2.6	11
29	Fabrication of octacalcium phosphate foam through phase conversion and its histological evaluation. Materials Letters, 2018, 212, 28-31.	2.6	17
30	Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor. Journal of Materials Science: Materials in Medicine, 2018, 29, 151.	3.6	29
31	Fabrication of calcite-coated rough-surface titanium using calcium nitrate. Surface and Coatings Technology, 2018, 356, 72-79.	4.8	6
32	Sodium Induces Octacalcium Phosphate Formation and Enhances Its Layer Structure by Affecting the Hydrous Layer Phosphate. Crystal Growth and Design, 2018, 18, 6165-6171.	3.0	28
33	Ammonium Substitutional Solid Solution of Octacalcium Phosphate (OCP). Chemistry Letters, 2018, 47, 1371-1374.	1.3	12
34	<i>In vivo</i> stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution–precipitation reaction for bone regeneration. Biomedical Materials (Bristol), 2018, 13, 065002.	3.3	5
35	Feasibility evaluation of low-crystallinity β -tricalcium phosphate blocks as a bone substitute fabricated by a dissolution–precipitation reaction from α -tricalcium phosphate blocks. Journal of Biomaterials Applications, 2018, 33, 259-270.	2.4	10
36	Effect of Calcium and Phosphate on Compositional Conversion from Dicalcium Hydrogen Phosphate Dihydrate Blocks to Octacalcium Phosphate Blocks. Crystals, 2018, 8, 222.	2.2	15

#	Article	IF	CITATIONS
37	Fabrication of carbonate apatite blocks from octacalcium phosphate blocks through different phase conversion mode depending on carbonate concentration. Journal of Solid State Chemistry, 2018, 267, 85-91.	2.9	6
38	Bone Cements Utilised for the Reconstruction of Hard Tissue: Basic Understanding and Recent Topics. , 2017, , 151-186.		1
39	"Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate― Journal of Materials Science: Materials in Medicine, 2017, 28, 122.	3.6	4
40	Fabrication of Carbonate Apatite Block through a Dissolution–Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor. Materials, 2017, 10, 374.	2.9	32
41	Fabrication of carbonate apatite pseudomorph from highly soluble acidic calcium phosphate salts through carbonation. Journal of the Ceramic Society of Japan, 2016, 124, 827-832.	1.1	8
42	Enhancement of HPO ₄ –OH layered structure in octacalcium phosphate and its morphological evolution by acetic acid. Journal of the Ceramic Society of Japan, 2016, 124, 1178-1184.	1.1	12
43	Growth dynamics of vaterite in relation to the physico-chemical properties of its precursor, amorphous calcium carbonate, in the Ca-CO ₃ -PO ₄ system. American Mineralogist, 2016, 101, 289-296.	1.9	9
44	Fabrication of carbonate apatite foam based on the setting reaction of $\hat{l}\pm$ -tricalcium phosphate foam granules. Ceramics International, 2016, 42, 204-210.	4.8	22
45	Solution Chemical Synthesis of Hollow Vaterite Particles for Advanced Biomaterial Applications. Chemistry Letters, 2015, 44, 20-22.	1.3	5
46	Metastable Intermediate Phase during Phase Transformation of Calcium Phosphates. Journal of Biotechnology & Biomaterials, 2015, 05, .	0.3	7
47	The effects of immobilized carboxylic-functional groups on the dynamics of phase transformation from amorphous to octacalcium phosphate. American Mineralogist, 2015, 100, 1624-1632.	1.9	10
48	Dissolution behavior of vaterite spherulite in solutions containing phosphate ions. Journal of the Ceramic Society of Japan, 2014, 122, 679-687.	1.1	7
49	Acceleration and inhibition effects of phosphate on phase transformation of amorphous calcium carbonate into vaterite. American Mineralogist, 2013, 98, 262-270.	1.9	11
50	Morphological evolution of precipitates during transformation of amorphous calcium phosphate into octacalcium phosphate in relation to role of intermediate phase. Journal of Crystal Growth, 2011, 332, 58-67.	1.5	19