José M Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885419/publications.pdf

Version: 2024-02-01

57719 66879 7,176 135 44 78 citations h-index g-index papers 136 136 136 7339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural antioxidants from residual sources. Food Chemistry, 2001, 72, 145-171.	4.2	1,325
2	Valorization of winery waste vs. the costs of not recycling. Waste Management, 2011, 31, 2327-2335.	3.7	261
3	Active and Intelligent Packaging for the Food Industry. Food Reviews International, 2012, 28, 146-187.	4.3	249
4	Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends in Food Science and Technology, 2004, 15, 115-120.	7.8	191
5	Biosurfactants in cosmetic formulations: trends and challenges. Critical Reviews in Biotechnology, 2017, 37, 911-923.	5.1	167
6	Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from) Tj ETQq0 0 0 International, 2010, 43, 1277-1282.) rgBT /Ove 2.9	erlock 10 Tf 161
7	Development of new polyolefin films with nanoclays for application in food packaging. European Polymer Journal, 2007, 43, 2229-2243.	2.6	156
8	Analytical strategies to evaluate antioxidants in food: a review. Trends in Food Science and Technology, 2010, 21, 229-246.	7.8	139
9	Antioxidant and Antimicrobial Effects of Extracts from Hydrolysates of Lignocellulosic Materials. Journal of Agricultural and Food Chemistry, 2001, 49, 2459-2464.	2.4	110
10	Solvent extraction of hemicellulosic wood hydrolysates: a procedure useful for obtaining both detoxified fermentation media and polyphenols with antioxidant activity. Food Chemistry, 1999, 67, 147-153.	4.2	102
11	Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends in Food Science and Technology, 2004, 15, 191-200.	7.8	102
12	Development of antioxidant active films containing tocopherols to extend theÂshelf life of fish. Food Control, 2013, 31, 236-243.	2.8	100
13	Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Science, 2014, 97, 249-254.	2.7	96
14	Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 2017, 155, 522-529.	2.5	96
15	Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 2007, 78, 405-412.	2.7	95
16	Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace) Tj ETQq0 0))verlock 10 7
17	Influence of the Metabolism Pathway on Lactic Acid Production from Hemicellulosic Trimming Vine Shoots Hydrolyzates Using Lactobacillus pentosus. Biotechnology Progress, 2008, 21, 793-798.	1.3	82
18	Production of fermentable media from vine-trimming wastes and bioconversion into lactic acid byLactobacillus pentosus. Journal of the Science of Food and Agriculture, 2004, 84, 2105-2112.	1.7	78

#	Article	IF	Citations
19	Development of new active packaging films containing bioactive nanocomposites. Innovative Food Science and Emerging Technologies, 2014, 26, 310-318.	2.7	76
20	Study of the Migration of Photoinitiators Used in Printed Food-Packaging Materials into Food Simulants. Journal of Agricultural and Food Chemistry, 2009, 57, 9516-9523.	2.4	73
21	Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chemistry, 2004, 84, 243-251.	4.2	72
22	Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. International Journal of Molecular Sciences, 2021, 22, 2371.	1.8	70
23	Optimization of extraction conditions and fatty acid characterization of <i>Lactobacillus pentosus</i> cellâ€bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture, 2015, 95, 313-320.	1.7	68
24	Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chemistry, 2014, 145, 191-197.	4.2	67
25	Lipid damage during frozen storage of Atlantic halibut (Hippoglossus hippoglossus) in active packaging film containing antioxidants. Food Chemistry, 2011, 126, 315-320.	4.2	63
26	Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. Journal of Chemical Technology and Biotechnology, 2003, 78, 392-398.	1.6	62
27	Ex Situ Treatment of Hydrocarbon-Contaminated Soil Using Biosurfactants from <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 9443-9447.	2.4	62
28	Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. International Journal of Biological Macromolecules, 2018, 109, 971-979.	3.6	62
29	Disruption of the cytochromec gene in xylose-utilizing yeastPichia stipitis leads to higher ethanol production., 1999, 15, 1021-1030.		61
30	Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnology, 2000, 14, 79-97.	0.6	60
31	Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. Journal of the Science of Food and Agriculture, 2005, 85, 466-472.	1.7	57
32	Assessment of the Production of Antioxidants from Winemaking Waste Solids. Journal of Agricultural and Food Chemistry, 2004, 52, 5612-5620.	2.4	56
33	Kinetic migration studies from packaging films into meat products. Meat Science, 2007, 77, 238-245.	2.7	56
34	Development of a Method To Study the Migration of Six Photoinitiators into Powdered Milk. Journal of Agricultural and Food Chemistry, 2008, 56, 2722-2726.	2.4	56
35	Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess and Biosystems Engineering, 2015, 38, 1629-1637.	1.7	54
36	Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. Journal of Industrial and Engineering Chemistry, 2017, 55, 40-49.	2.9	53

#	Article	IF	Citations
37	Partial Characterization of Biosurfactant from <i>Lactobacillus pentosus</i> and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. BioMed Research International, 2013, 2013, 1-6.	0.9	52
38	Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream. BioMed Research International, 2013, 2013, 1-11.	0.9	52
39	Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydrate Polymers, 2015, 115, 129-138.	5.1	51
40	Formulation of Low-Cost Fermentative Media for Lactic Acid Production with Lactobacillus rhamnosus Using Vinification Lees as Nutrients. Journal of Agricultural and Food Chemistry, 2004, 52, 801-808.	2.4	50
41	Study of the migration of benzophenone from printed paperboard packages to cakes through different plastic films. European Food Research and Technology, 2008, 227, 1585-1590.	1.6	50
42	Non-isothermal autohydrolysis of barley husks: Product distribution and antioxidant activity of ethyl acetate soluble fractions. Journal of Food Engineering, 2008, 84, 544-552.	2.7	50
43	Effect of detergents in the release of bisphenol A from polycarbonate baby bottles. Food Research International, 2009, 42, 1410-1414.	2.9	50
44	Migration and Diffusion of Diphenylbutadiene from Packages into Foods. Journal of Agricultural and Food Chemistry, 2009, 57, 10225-10230.	2.4	49
45	Mass transport studies of different additives in polyamide and exfoliated nanocomposite polyamide films for food industry. Packaging Technology and Science, 2010, 23, 59-68.	1.3	48
46	SHAM-sensitive alternative respiration in the xylose-metabolizing yeastPichia stipitis. Yeast, 2002, 19, 1203-1220.	0.8	45
47	Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Research International, 2013, 51, 663-669.	2.9	44
48	Xylitol production by a Pichia stipitis D-xylulokinase mutant. Applied Microbiology and Biotechnology, 2005, 68, 42-45.	1.7	43
49	Study of the Synergistic Effects of Salinity, pH, and Temperature on the Surface-Active Properties of Biosurfactants Produced by <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 1258-1265.	2.4	43
50	Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. Journal of Agricultural and Food Chemistry, 2014, 62, 5451-5457.	2.4	43
51	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials, 2017, 7, 139.	1.9	42
52	Development of an Analytical Method for the Determination of Photoinitiators Used for Food Packaging Materials with Potential to Migrate into Milk. Journal of Dairy Science, 2008, 91, 900-909.	1.4	40
53	Evaluation of Vinification Lees as a General Medium forLactobacillusStrains. Journal of Agricultural and Food Chemistry, 2004, 52, 5233-5239.	2.4	39
54	Time–temperature study of the kinetics of migration of DPBD from plastics into chocolate, chocolate spread and margarine. Food Research International, 2007, 40, 679-686.	2.9	39

#	Article	IF	CITATIONS
55	A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food and Function, 2016, 7, 3724-3732.	2.1	39
56	Molecularly imprinted hydrogels as functional active packaging materials. Food Chemistry, 2016, 190, 487-494.	4.2	39
57	Anti-oxidant activity of isolates from acid hydrolysates of Eucalyptus globulus wood. Food Chemistry, 2005, 90, 503-511.	4.2	37
58	Integral utilisation of barley husk for the production of food additives. Journal of the Science of Food and Agriculture, 2007, 87, 1000-1008.	1.7	37
59	Design and characterization of greener sunscreen formulations based on mica powder and a biosurfactant extract. Powder Technology, 2018, 327, 442-448.	2.1	36
60	Title is missing!. Biotechnology Letters, 2000, 22, 1895-1898.	1.1	35
61	Improved astaxanthin production by Xanthophyllomyces dendrorhous growing on enzymatic wood hydrolysates containing glucose and cellobiose. Food Chemistry, 1998, 63, 479-484.	4.2	34
62	Studies of mass transport of model chemicals from packaging into and within cheeses. Journal of Food Engineering, 2008, 87, 107-115.	2.7	32
63	Development of a Multimethod for the Determination of Photoinitiators in Beverage Packaging. Journal of Food Science, 2008, 73, C92-9.	1.5	32
64	Mass transport studies of model migrants within dry foodstuffs. Journal of Cereal Science, 2008, 48, 662-669.	1.8	32
65	Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere, 2014, 111, 24-31.	4.2	32
66	Evaluation of a biosurfactant extract obtained from corn for dermal application. International Journal of Pharmaceutics, 2019, 564, 225-236.	2.6	32
67	Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite. Carbohydrate Polymers, 2015, 131, 186-196.	5.1	31
68	Thermal stability of antioxidants obtained from wood and industrial wastes. Food Chemistry, 2007, 100, 1059-1064.	4.2	30
69	Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. Journal of Pharmaceutical Sciences, 2019, 108, 2296-2304.	1.6	30
70	Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Separation and Purification Technology, 2020, 248, 117076.	3.9	30
71	Xylitol Production from Wood Hydrolyzates by Entrapped Debaryomyces hansenii and Candida guilliermondii Cells. Applied Biochemistry and Biotechnology, 1999, 81, 119-130.	1.4	28
72	Development of a polyamide nanocomposite for food industry: Morphological structure, processing, and properties. Polymer Composites, 2009, 30, 436-444.	2.3	28

#	Article	IF	Citations
73	Effect of a Polyphenol–Vacuum Packaging on Lipid Deterioration During an 18-Month Frozen Storage of Coho Salmon (Oncorhynchus kisutch). Food and Bioprocess Technology, 2012, 5, 2602-2611.	2.6	28
74	Antioxidants from barley husks impregnated in films of lowâ€density polyethylene and their effect over lipid deterioration of frozen cod (⟨i⟩Gadus morhua⟨/i⟩). Journal of the Science of Food and Agriculture, 2012, 92, 427-432.	1.7	28
7 5	Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. Journal of Environmental Management, 2013, 128, 655-660.	3.8	28
76	A Multifunctional Biosurfactant Extract Obtained From Corn Steep Water as Bactericide for Agrifood Industry. Foods, 2019, 8, 410.	1.9	28
77	Effect of biosurfactant extract obtained from the cornâ€milling industry on probiotic bacteria in drinkable yogurt. Journal of the Science of Food and Agriculture, 2019, 99, 824-830.	1.7	27
78	Removal of pigments from aqueous solution by a calcium alginate–grape marc biopolymer: A kinetic study. Carbohydrate Polymers, 2014, 101, 954-960.	5.1	26
79	Effect of amines in the release of bisphenol A from polycarbonate baby bottles. Food Research International, 2010, 43, 1283-1288.	2.9	25
80	Adsorption of natural surface active compounds obtained from corn on human hair. RSC Advances, 2016, 6, 63064-63070.	1.7	25
81	Changes in the flesh of cooked farmed salmon (Oncorhynchus kisutch) with previous storage in slurry ice (Ⱂ1.5°C). LWT - Food Science and Technology, 2008, 41, 1726-1732.	2.5	24
82	Chromatographic Methods for the Determination of Polyfunctional Amines and Related Compounds Used as Monomers and Additives in Food Packaging Materials: A Stateâ€ofâ€theâ€Art Review. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 676-694.	5.9	24
83	Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity inÂvitro. Journal of Cereal Science, 2018, 81, 83-90.	1.8	24
84	Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. Tenside, Surfactants, Detergents, 2018, 55, 273-280.	0.5	24
85	Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. Journal of Surfactants and Detergents, 2020, 23, 79-90.	1.0	24
86	Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	23
87	Kinetic and morphology study of alginate-vineyard pruning waste biocomposite vs. non modified vineyard pruning waste for dye removal. Journal of Environmental Sciences, 2015, 38, 158-167.	3.2	23
88	Nutraceuticals and Food Additives. , 2017, , 143-164.		23
89	Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters. Bioresource Technology, 2011, 102, 6437-6442.	4.8	22
90	Extraction, purification and characterization of an antioxidant extract from barley husks and development of an antioxidant active film for food package. Innovative Food Science and Emerging Technologies, 2012, 13, 134-141.	2.7	22

#	Article	IF	Citations
91	Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor. Journal of Agricultural and Food Chemistry, 2015, 63, 7143-7150.	2.4	22
92	Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair. RSC Advances, 2017, 7, 16444-16452.	1.7	22
93	Isolation and characterization of a microorganism that produces biosurfactants in corn steep water. CYTA - Journal of Food, 2019, 17, 509-516.	0.9	22
94	Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiological Research, 2021, 242, 126614.	2.5	22
95	Production of carotenoids by Xanthophyllomyces dendrorhous growing on enzymatic hydrolysates of prehydrolysed wood. Food Chemistry, 1997, 60, 347-355.	4.2	21
96	Time-temperature study of the kinetics of migration of diphenylbutadiene from polyethylene films into aqueous foodstuffs. Food Research International, 2008, 41, 138-144.	2.9	21
97	Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	21
98	Evaluation of a cactus mucilage biocomposite to remove total arsenic from water. Environmental Technology and Innovation, 2016, 6, 69-79.	3.0	21
99	lonic Behavior Assessment of Surface-Active Compounds from Corn Steep Liquor by Exchange Resins. Journal of Surfactants and Detergents, 2017, 20, 207-217.	1.0	21
100	The effect of the presence of biosurfactant on the permeation of pharmaceutical compounds through silicone membrane. Colloids and Surfaces B: Biointerfaces, 2019, 176, 456-461.	2.5	21
101	Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS Omega, 2020, 5, 31381-31390.	1.6	21
102	Determination of Butylated Hydroxytoluene in Food Samples by High-Performance Liquid Chromatography with Ultraviolet Detection and Gas Chromatography/Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2007, 90, 277-283.	0.7	20
103	Optimization of the dose of calcium lactate as a new coagulant for the coagulation–flocculation of suspended particles in water. Desalination, 2011, 280, 63-71.	4.0	19
104	Selective removal of ATP degradation products from food matrices II: Rapid screening of hypoxanthine and inosine by molecularly imprinted matrix solid-phase dispersion for evaluation of fish freshness. Talanta, 2015, 135, 58-66.	2.9	19
105	Saltâ€Free Aqueous Extraction of a Cellâ€Bound Biosurfactant: a Kinetic Study. Journal of Surfactants and Detergents, 2015, 18, 267-274.	1.0	19
106	Study of the synergic effect between mica and biosurfactant to stabilize Pickering emulsions containing Vitamin E using a triangular design. Journal of Colloid and Interface Science, 2019, 537, 34-42.	5.0	19
107	Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolyzates. Biotechnology Letters, 2000, 22, 605-610.	1.1	18
108	Potential application of a multifunctional biosurfactant extract obtained from corn as stabilizing agent of vitamin C in cosmetic formulations. Sustainable Chemistry and Pharmacy, 2020, 16, 100248.	1.6	15

#	Article	IF	Citations
109	Novel Multifunctional Biosurfactant Obtained from Corn as a Stabilizing Agent for Antidandruff Formulations Based on Zn Pyrithione Powder. ACS Omega, 2020, 5, 5704-5712.	1.6	14
110	Optimization of batch operating conditions for the decolourization of vinasses using surface response methodology. Microchemical Journal, 2012, 102, 83-90.	2.3	13
111	Evaluation of Non-Conventional Coagulants to Remove Turbidity from Water. Water, Air, and Soil Pollution, 2012, 223, 591-598.	1.1	13
112	Recycled Lactobacillus pentosus biomass can regenerate biosurfactants after various fermentative and extractive cycles. Biochemical Engineering Journal, 2018, 132, 191-195.	1.8	13
113	Elimination of micronutrients from winery wastewater using entrapped grape marc in alginate beads. CYTA - Journal of Food, 2014, 12, 73-79.	0.9	12
114	Physicochemical study of a bio-based adsorbent made from grape marc. Ecological Engineering, 2015, 84, 190-193.	1.6	12
115	Towards more Ecofriendly Pesticides: Use of Biosurfactants Obtained from the Corn Milling Industry as Solubilizing Agent of Copper Oxychloride. Journal of Surfactants and Detergents, 2020, 23, 1055-1066.	1.0	12
116	Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods, 2020, 9, 662.	1.9	12
117	Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-10.	1.1	11
118	Study of the diffusion coefficients of diphenylbutadiene and triclosan into and within meat. European Food Research and Technology, 2010, 230, 957-964.	1.6	10
119	Lipid Damage Inhibition in Hake by Active Packaging Film with Natural Antioxidants. Packaging Technology and Science, 2011, 24, 353-360.	1.3	10
120	Effectiveness of antioxidants on lipid oxidation and lipid hydrolysis of cod liver oil. European Journal of Lipid Science and Technology, 2011, 113, 1395-1401.	1.0	10
121	Industrial Symbiosis Between the Winery and Environmental Industry Through the Utilization of Grape Marc for Water Desalination Containing Copper(II). Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
122	Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods, 2020, 9, 1747.	1.9	7
123	Nanomaterials synthesized by biosurfactants. Comprehensive Analytical Chemistry, 2021, , 267-301.	0.7	7
124	Selective Adsorption Capacity of Grape Marc Hydrogel for Adsorption of Binary Mixtures of Dyes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
125	Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels. Molecules, 2020, 25, 5183.	1.7	6
126	Study of biosurfactant extract from corn steep water as a potential ingredient in antiacne formulations. Journal of Dermatological Treatment, 2022, 33, 393-400.	1.1	6

#	Article	IF	CITATIONS
127	Development of an in-house method for the incorporation of model migrants in polyethylene films and determination of diffusion constants in food. European Food Research and Technology, 2008, 226, 1357-1363.	1.6	5
128	Analytical method for the simultaneous determination of polyfunctional amines used as monomers in the manufacture of food packaging materials. Journal of Chromatography A, 2011, 1218, 7105-7109.	1.8	5
129	Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Applied Sciences (Switzerland), 2021, 11, 5904.	1.3	4
130	Efficient Adsorption of Lead Ions onto Alginate–Grape Marc Hybrid Beads: Optimization and Bioadsorption Kinetics. Environmental Modeling and Assessment, 2020, 25, 677-687.	1.2	3
131	Active Packaging Film Based in Natural Antioxidant from Barley Husks and Effect over Lipid Damage of Frozen Swordfish (Xiphias gladius). Food Science and Technology Research, 2011, 17, 453-460.	0.3	2
132	Determination of Partition Coefficients of Selected Model Migrants between Polyethylene and Polypropylene and Nanocomposite Polypropylene. Journal of Chemistry, 2016, 2016, 1-10.	0.9	2
133	Evaluation of Calcium Alginate-Based Biopolymers as Potential Component of Membranes for Recovering Biosurfactants from Corn Steep Water. Water (Switzerland), 2021, 13, 2396.	1.2	1
134	LINKING EDUCATION AND INNOVATION IN URBAN WASTE WATER TREATMENT PLANTS THROUGH FINAL DEGREE PROJECTS. , $2018, , .$		0
135	FINAL DEGREE PROJECTS AS VEHICLE TO PROMOTE INDUSTRIAL SYMBIOSIS IN ENGINEERING SCHOOLS. , 2018, , .		0