Bruno Cauli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885226/publications.pdf Version: 2024-02-01

RRUNO CAULL

#	Article	IF	CITATIONS
1	Astrocytes respond to a neurotoxic A^2 fragment with state-dependent Ca2+ alteration and multiphasic transmitter release. Acta Neuropathologica Communications, 2021, 9, 44.	2.4	15
2	Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network. Journal of Neuroscience, 2021, 41, 5779-5790.	1.7	31
3	Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. ELife, 2021, 10, .	2.8	42
4	Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. NeuroImage, 2020, 220, 117069.	2.1	14
5	Impairment of Glycolysis-Derived I-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease. Cell Metabolism, 2020, 31, 503-517.e8.	7.2	160
6	Gene Expression Analysis by Multiplex Single-Cell RT-PCR. Methods in Molecular Biology, 2019, 1941, 139-154.	0.4	2
7	Excitation of Cortical nNOS/NK1R Neurons by Hypocretin 1 is Independent of Sleep Homeostasis. Cerebral Cortex, 2019, 29, 1090-1108.	1.6	8
8	Bioluminescence calcium imaging of network dynamics and their cholinergic modulation in slices of cerebral cortex from male rats. Journal of Neuroscience Research, 2019, 97, 414-432.	1.3	3
9	Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain. Cerebral Cortex, 2018, 28, 1959-1979.	1.6	12
10	Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp. Journal of Visualized Experiments, 2018, , .	0.2	9
11	Supragranular Pyramidal Cells Exhibit Early Metabolic Alterations in the 3xTg-AD Mouse Model of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 216.	1.8	11
12	Brain Perfusion and Astrocytes. Trends in Neurosciences, 2018, 41, 409-413.	4.2	23
13	Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex― Science, 2016, 353, 1108-1108.	6.0	24
14	Cyclooxygenase-2-Derived Prostaglandins Mediate Cerebral Microcirculation in a Juvenile Ischemic Rat Model. Stroke, 2016, 47, 3048-3052.	1.0	11
15	Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Structure and Function, 2016, 221, 4007-4025.	1.2	79
16	Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons. Molecular Neurobiology, 2016, 53, 5000-5012.	1.9	36
17	COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. Journal of Neuroscience, 2015, 35, 11791-11810.	1.7	85
18	Revisiting enigmatic cortical calretinin-expressing interneurons. Frontiers in Neuroanatomy, 2014, 8, 52.	0.9	70

Bruno Cauli

#	Article	lF	CITATIONS
19	Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Frontiers in Cellular Neuroscience, 2014, 8, 247.	1.8	34
20	Characterization and Distribution of Reelin-Positive Interneuron Subtypes in the Rat Barrel Cortex. Cerebral Cortex, 2014, 24, 3046-3058.	1.6	39
21	Beyond the frontiers of neuronal types: fuzzy classification of interneurons. BMC Neuroscience, 2013, 14, .	0.8	0
22	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	4.9	707
23	Beyond the frontiers of neuronal types. Frontiers in Neural Circuits, 2013, 7, 13.	1.4	47
24	Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus. Frontiers in Neural Circuits, 2013, 7, 60.	1.4	28
25	Cortical NO interneurons: from embryogenesis to functions. Frontiers in Neural Circuits, 2013, 7, 105.	1.4	3
26	Calcium-Permeable AMPA Receptors Provide a Common Mechanism for LTP in Glutamatergic Synapses of Distinct Hippocampal Interneuron Types. Journal of Neuroscience, 2012, 32, 6511-6516.	1.7	64
27	Pyramidal Neurons Are "Neurogenic Hubs" in the Neurovascular Coupling Response to Whisker Stimulation. Journal of Neuroscience, 2011, 31, 9836-9847.	1.7	148
28	Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation?. Trends in Neurosciences, 2011, 34, 10-19.	4.2	81
29	<i>in vivo</i> 3D Morphology of Astrocyte—Vasculature Interactions in the Somatosensory Cortex: Implications for Neurovascular Coupling. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 795-806.	2.4	144
30	VIP, CRF, and PACAP Act at Distinct Receptors to Elicit Different cAMP/PKA Dynamics in the Neocortex. Cerebral Cortex, 2011, 21, 708-718.	1.6	31
31	Revisiting the role of neurons in neurovascular coupling. Frontiers in Neuroenergetics, 2010, 2, 9.	5.3	204
32	Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells. Journal of Neuroscience, 2010, 30, 2165-2176.	1.7	153
33	Chapter 9. Gene Analysis of Single Cells. RSC Nanoscience and Nanotechnology, 2010, , 81-92.	0.2	3
34	Classification of NPY-Expressing Neocortical Interneurons. Journal of Neuroscience, 2009, 29, 3642-3659.	1.7	212
35	Glutamatergic Nonpyramidal Neurons From Neocortical Layer VI and Their Comparison With Pyramidal and Spiny Stellate Neurons. Journal of Neurophysiology, 2009, 101, 641-654.	0.9	61
36	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	4.9	1,314

Bruno Cauli

#	Article	IF	CITATIONS
37	Extensive Overlap of Mu-Opioid and Nicotinic Sensitivity in Cortical Interneurons. Cerebral Cortex, 2007, 17, 1948-1957.	1.6	60
38	Functional CB1 Receptors Are Broadly Expressed in Neocortical GABAergic and Glutamatergic Neurons. Journal of Neurophysiology, 2007, 97, 2580-2589.	0.9	139
39	Nitric Oxide Release during Evoked Neuronal Activity in Cerebellum Slices: Detection with Platinized Carbon-Fiber Microelectrodes. ChemPhysChem, 2006, 7, 181-187.	1.0	66
40	Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. Journal of Neuroscience, 2006, 26, 6997-7006.	1.7	119
41	Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area. Journal of Neuroscience, 2005, 25, 6775-6786.	1.7	233
42	The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 2005, 134, 1377-1390.	1.1	180
43	Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways. Journal of Neuroscience, 2004, 24, 8940-8949.	1.7	501
44	In vitro study of the sleep promoting neurons from the ventrolateral preoptic nucleus. Sleep and Biological Rhythms, 2004, 2, S23-S24.	0.5	0
45	Expression of Functional Tyrosine Kinase B Receptors by Rhythmically Active Respiratory Neurons in the Pre-BA¶tzinger Complex of Neonatal Mice. Journal of Neuroscience, 2003, 23, 7685-7689.	1.7	87
46	5-HT3Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons. Journal of Neuroscience, 2002, 22, 7389-7397.	1.7	204
47	DNA Microarrays in Neurobiology. Frontiers in Neuroscience, 2001, , .	0.0	1
48	Identification of sleep-promoting neurons in vitro. Nature, 2000, 404, 992-995.	13.7	448
49	Classification of fusiform neocortical interneurons based on unsupervised clustering. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6144-6149.	3.3	286
50	Selective Excitation of Subtypes of Neocortical Interneurons by Nicotinic Receptors. Journal of Neuroscience, 1999, 19, 5228-5235.	1.7	237
51	Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. European Journal of Neuroscience, 1998, 10, 3617-3628.	1.2	145
52	Molecular and Physiological Diversity of Cortical Nonpyramidal Cells. Journal of Neuroscience, 1997, 17, 3894-3906.	1.7	636