Abhay Andar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788507/publications.pdf Version: 2024-02-01

Δρμαν Δνισαρ

#	Article	IF	CITATIONS
1	Rapid and lowâ€cost sampling for detection of airborne SARSâ€CoVâ€2 in dehumidifier condensate. Biotechnology and Bioengineering, 2021, 118, 3029-3036.	3.3	16
2	Transdermal sensing: in-situ non-invasive techniques for monitoring of human biochemical status. Current Opinion in Biotechnology, 2021, 71, 198-205.	6.6	12
3	What do masks mask? A study on transdermal CO2 monitoring. Medical Engineering and Physics, 2021, 98, 50-56.	1.7	3
4	Realâ€ŧime dissolved carbon dioxide monitoring II: Surface aeration intensification for efficient CO 2 removal in shake flasks and miniâ€bioreactors leads to superior growth and recombinant protein yields. Biotechnology and Bioengineering, 2020, 117, 992-998.	3.3	14
5	Realâ€time dissolved carbon dioxide monitoring I: Application of a novel in situ sensor for CO 2 monitoring and control. Biotechnology and Bioengineering, 2020, 117, 981-991.	3.3	12
6	A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synthetic Biology, 2020, 9, 2188-2196.	3.8	2
7	Manufacturing biological medicines on demand: Safety and efficacy of granulocyte colonyâ€stimulating factor in a mouse model of total body irradiation. Biotechnology Progress, 2020, 36, e2970.	2.6	6
8	Wood Microfluidics. Analytical Chemistry, 2019, 91, 11004-11012.	6.5	20
9	Fractal Carbon Islands on Plastic Substrates for Enhancement in Directional and Beaming Fluorescence Emission. ACS Applied Nano Materials, 2019, 2, 6103-6109.	5.0	5
10	Spacer and Cavity Engineering on Low-cost Plastic Substrates for 100-Fold Enhancements in Metal-Dielectric-Metal-Based Directional Fluorescence Emission. Plasmonics, 2019, 14, 731-736.	3.4	2
11	Low ost customizable microscale toolkit for rapid screening and purification of therapeutic proteins. Biotechnology and Bioengineering, 2019, 116, 870-881.	3.3	10
12	Improving the recombinant human erythropoietin glycosylation using microsome supplementation in CHO cellâ€free system. Biotechnology and Bioengineering, 2018, 115, 1253-1264.	3.3	17
13	Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Current Opinion in Chemical Engineering, 2018, 22, 115-127.	7.8	22
14	Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Analytical and Bioanalytical Chemistry, 2018, 410, 7249-7260.	3.7	16
15	Rapid recombinant protein expression in cell-free extracts from human blood. Scientific Reports, 2018, 8, 9569.	3.3	19
16	Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nature Biomedical Engineering, 2018, 2, 675-686.	22.5	79
17	Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles. Molecular Pharmaceutics, 2017, 14, 953-958.	4.6	18
18	Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Analytical and Bioanalytical Chemistry, 2017, 409, 3475-3482.	3.7	6

Abhay Andar

#	Article	IF	CITATIONS
19	Optimizing cellâ€free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations. Biotechnology and Bioengineering, 2017, 114, 1478-1486.	3.3	14
20	Non-Invasive Optical Sensor Based Approaches for Monitoring Virus Culture to Minimize BSL3 Laboratory Entry. Sensors, 2015, 15, 14864-14870.	3.8	1
21	A unique noninvasive approach to monitoring dissolved O ₂ and CO ₂ in cell culture. Biotechnology and Bioengineering, 2015, 112, 104-110.	3.3	14
22	A Low-Cost Fluorescent Sensor for pCO2 Measurements. Chemosensors, 2014, 2, 108-120.	3.6	10
23	A completely noninvasive method of dissolved oxygen monitoring in disposable smallâ€scale cell culture vessels based on diffusion through permeable vessel walls. Biotechnology Progress, 2014, 30, 172-177.	2.6	12
24	Portable system for the detection of micromolar concentrations of glucose. Measurement Science and Technology, 2014, 25, 025701.	2.6	18
25	Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms. Pharmaceutical Research, 2014, 31, 401-413.	3.5	124
26	Intradermal Delivery of <i>Shigella</i> IpaB and IpaD Type III Secretion Proteins: Kinetics of Cell Recruitment and Antigen Uptake, Mucosal and Systemic Immunity, and Protection across Serotypes. Journal of Immunology, 2014, 192, 1630-1640.	0.8	52
27	Passive Diffusion of Transdermal Glucose. Journal of Diabetes Science and Technology, 2014, 8, 291-298.	2.2	17
28	A novel approach toward noninvasive monitoring of transcutaneous CO2. Medical Engineering and Physics, 2014, 36, 136-139.	1.7	9
29	Detection of Trace Glucose on the Surface of a Semipermeable Membrane Using a Fluorescently Labeled Glucose-Binding Protein: A Promising Approach to Noninvasive Glucose Monitoring. Journal of Diabetes Science and Technology, 2013, 7, 4-12.	2.2	11
30	Microfluidic synthesis of PEGylated liposomes. , 2012, , .		0
31	Study on low-cost calibration-free pH sensing with disposable optical sensors. Analytica Chimica Acta, 2012, 734, 79-87.	5.4	16
32	Realâ€ŧime monitoring of shake flask fermentation and off gas using triple disposable noninvasive optical sensors. Biotechnology Progress, 2012, 28, 872-877.	2.6	17
33	Polyelectrolyte multilayers generated in a microfluidic device with pH gradients direct adhesion and movement of cells. Lab on A Chip, 2011, 11, 3326.	6.0	38
34	On the Possibility of Realâ€Time Monitoring of Glucose in Cell Culture by Microdialysis Using a Fluorescent Glucose Binding Protein Sensor. Biotechnology Progress, 2008, 24, 691-697.	2.6	19
35	Genomic expression of mesenchymal stem cells to altered nanoscale topographies. Journal of the Royal Society Interface, 2008, 5, 1055-1065.	3.4	88
36	Comparing the Performance of the Optical Glucose Assay Based on Glucose Binding Protein with High-Performance Anion-Exchange Chromatography with Pulsed Electrochemical Detection: Efforts to Design a Low-Cost Point-of-Care Glucose Sensor. Journal of Diabetes Science and Technology, 2007, 1, 864-872.	2.2	15

Abhay Andar

#	Article	IF	CITATIONS
37	The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 2007, 6, 997-1003.	27.5	2,177
38	Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology, 2006, 122, 293-306.	3.8	97
39	Fluorescent Aromatic Platforms for Cell Patterning. Langmuir, 2006, 22, 5528-5532.	3.5	19
40	Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering, 2005, 89, 329-334.	3.3	55
41	Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose. Analytical Chemistry, 2004, 76, 1403-1410.	6.5	88
42	Genetically engineered binding proteins as biosensors for fermentation and cell culture. Biotechnology and Bioengineering, 2003, 84, 723-731.	3.3	33
43	High-stability non-invasive autoclavable naked optical CO2 sensor. Biosensors and Bioelectronics, 2003, 18, 857-865.	10.1	70