
Isabelle Vernos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7884497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The human sperm basal body is a complex centrosome important for embryo preimplantation development. Molecular Human Reproduction, 2021, 27, .	2.8	22
2	The chaperonin CCT controls T cell receptor–driven 3D configuration of centrioles. Science Advances, 2020, 6, .	10.3	23
3	DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. Journal of Cell Science, 2019, 132, .	2.0	4
4	Microtubule nucleation during central spindle assembly requires NEDD1 phosphorylation on Serine 405 by Aurora A. Journal of Cell Science, 2019, 132, .	2.0	8
5	Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humansâ€. Biology of Reproduction, 2019, 100, 575-589.	2.7	13
6	Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. Current Biology, 2018, 28, 121-129.e4.	3.9	48
7	Functional Analysis of Human Pathological Semen Samples in an Oocyte Cytoplasmic Ex Vivo System. Scientific Reports, 2018, 8, 15348.	3.3	3
8	Proteomic Profiling of Microtubule Self-organization in M-phase. Molecular and Cellular Proteomics, 2018, 17, 1991-2004.	3.8	5
9	Role of Kif15 and its novel mitotic partner KBP in K-fiber dynamics and chromosome alignment. PLoS ONE, 2017, 12, e0174819.	2.5	17
10	Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Frontiers in Oncology, 2016, 6, 88.	2.8	28
11	Microtubule Organization in Mitotic Cells. , 2016, , 1-26.		0
12	From meiosis to mitosis: the sperm centrosome defines the kinetics of spindle assembly after fertilization. Journal of Cell Science, 2016, 129, 2538-47.	2.0	7
13	The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation. Molecular Biology of the Cell, 2016, 27, 2935-2945.	2.1	11
14	Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biology, 2016, 6, 160089.	3.6	39
15	The C-terminal domain of TPX2 is made of alpha-helical tandem repeats. BMC Structural Biology, 2016, 16, 17.	2.3	6
16	Aurora-A regulates MCRS1 function during mitosis. Cell Cycle, 2016, 15, 1779-1786.	2.6	4
17	Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends in Cell Biology, 2016, 26, 80-87.	7.9	80
18	From meiosis to mitosis – the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	0

#	Article	IF	CITATIONS
19	Microtubule Nucleation in Mitosis by a RanGTP-Dependent Protein Complex. Current Biology, 2015, 25, 131-140.	3.9	81
20	An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nature Communications, 2015, 6, 7889.	12.8	48
21	The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Frontiers in Cell and Developmental Biology, 2015, 3, 82.	3.7	106
22	Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genetics, 2015, 11, e1005345.	3.5	43
23	Aurora A: Working from dawn to dusk in mitosis. Cell Cycle, 2014, 13, 499-500.	2.6	6
24	XTACC3–XMAP215 association reveals an asymmetric interaction promoting microtubule elongation. Nature Communications, 2014, 5, 5072.	12.8	19
25	The Role of NEDD1 Phosphorylation by Aurora A in Chromosomal Microtubule Nucleation and Spindle Function. Current Biology, 2013, 23, 143-149.	3.9	53
26	Quotas are questionable. Nature, 2013, 495, 39-39.	27.8	34
27	Aurora A kinase and its substrate TACC3 are required for central spindle assembly. EMBO Reports, 2013, 14, 829-836.	4.5	72
28	Structure and Non-Structure of Centrosomal Proteins. PLoS ONE, 2013, 8, e62633.	2.5	25
29	Microtubule assembly during mitosis – from distinct origins to distinct functions?. Journal of Cell Science, 2012, 125, 2805-14.	2.0	94
30	Nek9 Phosphorylation of NEDD1/GCP-WD Contributes to Plk1 Control of γ-Tubulin Recruitment to the Mitotic Centrosome. Current Biology, 2012, 22, 1516-1523.	3.9	67
31	Chromokinesins: localization-dependent functions and regulation during cell division. Biochemical Society Transactions, 2011, 39, 1154-1160.	3.4	31
32	K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nature Cell Biology, 2011, 13, 1406-1414.	10.3	89
33	Uncovering new substrates for Aurora A kinase. EMBO Reports, 2010, 11, 977-984.	4.5	59
34	Plant TPX2 and related proteins. Plant Signaling and Behavior, 2009, 4, 69-72.	2.4	22
35	The Role of Hklp2 in the Stabilization and Maintenance of Spindle Bipolarity. Current Biology, 2009, 19, 1712-1717.	3.9	136
36	Development and Biological Evaluation of a Novel Aurora A Kinase Inhibitor. ChemBioChem, 2009, 10, 464-478.	2.6	35

#	Article	IF	CITATIONS
37	Dissecting the role of Aurora A during spindle assembly. EMBO Journal, 2008, 27, 2567-2579.	7.8	79
38	Dissecting the role of Aurora A during spindle assembly. EMBO Journal, 2008, 27, 2942-2942.	7.8	2
39	Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nature Cell Biology, 2008, 10, 858-865.	10.3	79
40	The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends in Cell Biology, 2008, 18, 379-388.	7.9	154
41	The Plant TPX2 Protein Regulates Prospindle Assembly before Nuclear Envelope Breakdown. Plant Cell, 2008, 20, 2783-2797.	6.6	102
42	The Kinesin Superfamily Motor Protein KIF4 Is Associated With Immune Cell Activation in Idiopathic Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 624-632.	1.7	20
43	Detection and Quantification of Protein-Microtubules Interactions Using Green Fluorescent Protein Photoconversion. Traffic, 2006, 7, 1283-1289.	2.7	3
44	Only one spindle, if you please Nature Cell Biology, 2006, 8, 901-902.	10.3	1
45	A Role for Kinesin-2 in COPI-Dependent Recycling between the ER and the Golgi Complex. Current Biology, 2006, 16, 2245-2251.	3.9	65
46	Chromokinesin Xklp1 Contributes to the Regulation of Microtubule Density and Organization during Spindle Assembly. Molecular Biology of the Cell, 2006, 17, 1451-1460.	2.1	25
47	Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication. Journal of Cell Science, 2006, 119, 2035-2047.	2.0	37
48	Kinesin-2 is a Motor for Late Endosomes and Lysosomes. Traffic, 2005, 6, 1114-1124.	2.7	119
49	Development and Biological Evaluation of Potent and Specific Inhibitors of Mitotic Kinesin Eg5. ChemBioChem, 2005, 6, 1173-1177.	2.6	139
50	Regulation of Microtubule-dependent Recycling at the Trans-Golgi Network by Rab6A and Rab6A'. Molecular Biology of the Cell, 2005, 16, 162-177.	2.1	101
51	Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. Journal of Cell Biology, 2005, 170, 1057-1066.	5.2	127
52	Determinants for Aurora-A Activation and Aurora-B Discrimination by TPX2. Cell Cycle, 2004, 3, 402-405.	2.6	53
53	The mechanism of spindle assembly. Journal of Cell Biology, 2004, 166, 949-955.	5.2	198
54	Characterization of the TPX2 Domains Involved in Microtubule Nucleation and Spindle Assembly in Xenopus Egg Extracts. Molecular Biology of the Cell, 2004, 15, 5318-5328.	2.1	107

#	Article	IF	CITATIONS
55	Protein 4.1R regulates interphase microtubule organization at the centrosome. Journal of Cell Science, 2004, 117, 6197-6206.	2.0	21
56	A Kinesin-like Motor Inhibits Microtubule Dynamic Instability. Science, 2004, 303, 1519-1522.	12.6	138
57	Kinesin II Mediates Vg1 mRNA Transport in Xenopus Oocytes. Current Biology, 2004, 14, 219-224.	3.9	83
58	The Chromosomal Passenger Complex Takes Center Stage during Mitosis. Developmental Cell, 2004, 7, 145-146.	7.0	9
59	Determinants for Aurora-A activation and Aurora-B discrimination by TPX2. Cell Cycle, 2004, 3, 404-7.	2.6	28
60	Structural Basis of Aurora-A Activation by TPX2 at the Mitotic Spindle. Molecular Cell, 2003, 12, 851-862.	9.7	541
61	Dynactin is required for bidirectional organelle transport. Journal of Cell Biology, 2003, 160, 297-301.	5.2	281
62	Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes. Nature Cell Biology, 2002, 4, 737-742.	10.3	28
63	Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biology, 2002, 4, 871-879.	10.3	287
64	The Mitotic Spindle: A Self-Made Machine. Science, 2001, 294, 543-547.	12.6	438
65	Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin $\hat{1}\pm$ on TPX2 Activity. Cell, 2001, 104, 83-93.	28.9	572
66	A Dominant Negative Approach for Functional Studies of the Kinesin II Complex. , 2001, 164, 191-204.		10
67	The Use of Dominant Negative Mutants to Study the Function of Mitotic Motors in the In Vitro Spindle Assembly Assay in Xenopus Egg Extracts. , 2001, 164, 173-189.		3
68	Chromosome motors on the move. EMBO Reports, 2001, 2, 669-673.	4.5	30
69	Analysis of heterodimer formation by Xklp3A/B, a newly cloned kinesin-II from Xenopus laevis. EMBO Journal, 2001, 20, 3370-3379.	7.8	31
70	Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Reports, 2001, 2, 669-73.	4.5	14
71	Tpx2, a Novel Xenopus Map Involved in Spindle Pole Organization. Journal of Cell Biology, 2000, 149, 1405-1418.	5.2	347
72	Xkid, a Chromokinesin Required for Chromosome Alignment on the Metaphase Plate. Cell, 2000, 102, 425-435.	28.9	219

#	Article	IF	CITATIONS
73	Kinesin subfamily UNC104 contains a FHA domain: boundaries and physicochemical characterization. FEBS Letters, 2000, 486, 285-290.	2.8	21
74	A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology, 1998, 8, 903-913.	3.9	394
75	Role of Xklp3, a Subunit of the Xenopus Kinesin II Heterotrimeric Complex, in Membrane Transport between the Endoplasmic Reticulum and the Golgi Apparatus. Journal of Cell Biology, 1998, 143, 1559-1573.	5.2	92
76	Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein. Journal of Cell Biology, 1998, 143, 673-685.	5.2	171
77	Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores. Journal of Cell Biology, 1998, 143, 1547-1558.	5.2	175
78	The role of microtubule dependent motors in centrosome movements and spindle pole organization during mitosis. Seminars in Cell and Developmental Biology, 1996, 7, 367-378.	5.0	28
79	Xklp2, a Novel Xenopus Centrosomal Kinesin-like Protein Required for Centrosome Separation during Mitosis. Cell, 1996, 84, 49-59.	28.9	151
80	Motors involved in spindle assembly and chromosome segregation. Current Opinion in Cell Biology, 1996, 8, 4-9.	5.4	77
81	Chromosomes take the lead in spindle assembly. Trends in Cell Biology, 1995, 5, 297-301.	7.9	80
82	Xklp15 a chromosomal xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell, 1995, 81, 117-127.	28.9	238
83	S1 Nuclease-Sensitive Sites in the Bithoraxoid Region of the Drosophila Ultrabithorax Gene. Biochemical and Biophysical Research Communications, 1993, 194, 647-653.	2.1	0
84	Multiple Kinesin-like Transcripts in Xenopus Oocytes. Developmental Biology, 1993, 157, 232-239.	2.0	44
85	Different forms of Ultrabithorax proteins generated by alternative splicing are functionally equivalent EMBO Journal, 1990, 9, 3551-3555.	7.8	25
86	Different forms of Ultrabithorax proteins generated by alternative splicing are functionally equivalent. EMBO Journal, 1990, 9, 3551-5.	7.8	8
87	Insects as test systems for assessing the potential role of microgravity in biological development and evolution. Advances in Space Research, 1989, 9, 137-146.	2.6	5
88	Quantitative analysis of ventral denticular patterns of Drosophila melanogaster larvae and the regulation of the bithorax complex. BioSystems, 1989, 23, 139-158.	2.0	1
89	Analysis of the Involvement of the Terrestrial Space Radiation in the Microgravity Effects on Drosophila Melanogaster Development and Aging. , 1988, , 509-516.		1
90	Embryogenesis and aging of Drosophila melanogaster flown in the space shuttle. Die Naturwissenschaften, 1986, 73, 431-432.	1.6	30

#	Article	IF	CITATIONS
91	Genetic organization of Drosophila bithorax complex. Nature, 1985, 313, 108-113.	27.8	547