Margaret A Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7883966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Theory and Community Restoration Ecology. Restoration Ecology, 1997, 5, 291-300.	1.4	846
2	River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?. Freshwater Biology, 2010, 55, 205-222.	1.2	715
3	Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment, 2008, 6, 81-89.	1.9	711
4	River restoration. Water Resources Research, 2005, 41, .	1.7	452
5	ECOLOGY: Ecology for a Crowded Planet. Science, 2004, 304, 1251-1252.	6.0	440
6	River flows and water wars: emerging science for environmental decision making. Frontiers in Ecology and the Environment, 2003, 1, 298-306.	1.9	416
7	The Function of Marine Critical Transition Zones and the Importance of Sediment Biodiversity. Ecosystems, 2001, 4, 430-451.	1.6	413
8	Restoring Rivers One Reach at a Time: Results from a Survey of U.S. River Restoration Practitioners. Restoration Ecology, 2007, 15, 482-493.	1.4	382
9	Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature Climate Change, 2016, 6, 25-34.	8.1	357
10	Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 2019, 365, .	6.0	354
11	Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Frontiers in Ecology and the Environment, 2008, 6, 247-254.	1.9	348
12	River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. , 2011, 21, 1926-1931.		347
13	Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 2009, 1, 46-54.	3.1	337
14	Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 247-269.	3.8	334
15	Climate Change and River Ecosystems: Protection and Adaptation Options. Environmental Management, 2009, 44, 1053-1068.	1.2	326
16	Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society, 2009, 28, 1080-1098.	3.0	312
17	Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos, 2000, 91, 175-183.	1.2	275
18	Restoration of Ecosystem Services for Environmental Markets. Science, 2009, 325, 575-576.	6.0	257

MARGARET A PALMER

#	Article	IF	CITATIONS
19	Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 2008, 6, 529-538.	1.9	251
20	Dissolved Organic Matter Quality and Bioavailability Changes Across an Urbanization Gradient in Headwater Streams. Environmental Science & Technology, 2014, 48, 7817-7824.	4.6	239
21	INVERTEBRATE BIODIVERSITY IN AGRICULTURAL AND URBAN HEADWATER STREAMS: IMPLICATIONS FOR CONSERVATION AND MANAGEMENT. , 2005, 15, 1169-1177.		235
22	Stream Temperature Surges under Urbanization and Climate Change: Data, Models, and Responses. Journal of the American Water Resources Association, 2007, 43, 440-452.	1.0	228
23	Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and the Environment, 2014, 12, 48-58.	1.9	216
24	River Restoration in the Twentyâ€First Century: Data and Experiential Knowledge to Inform Future Efforts. Restoration Ecology, 2007, 15, 472-481.	1.4	206
25	Environmental flows and water governance: managing sustainable water uses. Current Opinion in Environmental Sustainability, 2013, 5, 341-351.	3.1	198
26	Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science. Estuaries and Coasts, 2009, 32, 1-17.	1.0	182
27	From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 2014, 65, 62-70.	1.6	179
28	Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecological Indicators, 2018, 85, 1262-1272.	2.6	165
29	THE INFLUENCE OF SUBSTRATE HETEROGENEITY ON BIOFILM METABOLISM IN A STREAM ECOSYSTEM. Ecology, 2002, 83, 412-422.	1.5	149
30	Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. Journal of Applied Ecology, 2009, 46, 154-163.	1.9	144
31	Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia, 1999, 119, 445-451.	0.9	142
32	Title is missing!. Landscape Ecology, 2000, 15, 563-576.	1.9	142
33	The Heartbeat of Ecosystems. Science, 2012, 336, 1393-1394.	6.0	135
34	The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences, 2011, 1223, 39-57.	1.8	134
35	Accelerate Synthesis in Ecology and Environmental Sciences. BioScience, 2009, 59, 699-701.	2.2	132
36	Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia, 1996, 105, 247-257.	0.9	130

3

Margaret A Palmer

#	Article	IF	CITATIONS
37	Ecological science and sustainability for the 21st century. Frontiers in Ecology and the Environment, 2005, 3, 4-11.	1.9	127
38	Hydroecology and river restoration: Ripe for research and synthesis. Water Resources Research, 2006, 42, .	1.7	124
39	How to Avoid Train Wrecks When Using Science in Environmental Problem Solving. BioScience, 2002, 52, 1127.	2.2	104
40	The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshwater Biology, 2001, 46, 491-501.	1.2	93
41	Restoring watersheds project by project: trends in Chesapeake Bay tributary restoration. Frontiers in Ecology and the Environment, 2005, 3, 259-267.	1.9	92
42	Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. , 2011, 21, 1989-2006.		90
43	DISTURBANCE MODERATES BIODIVERSITY–ECOSYSTEM FUNCTION RELATIONSHIPS: EXPERIMENTAL EVIDENCE FROM CADDISFLIES IN STREAM MESOCOSMS. Ecology, 2002, 83, 1915-1927.	1.5	89
44	Socio-Environmental Systems (SES) Research: what have we learned and how can we use this information in future research programs. Current Opinion in Environmental Sustainability, 2016, 19, 160-168.	3.1	89
45	Ecological Forecasting and the Urbanization of Stream Ecosystems: Challenges for Economists, Hydrologists, Geomorphologists, and Ecologists. Ecosystems, 2003, 6, 659-674.	1.6	88
46	What drives smallâ€scale spatial patterns in lotic meiofauna communities?. Freshwater Biology, 2000, 44, 109-121.	1.2	78
47	Assessing Stream Ecosystem Rehabilitation: Limitations of Community Structure Data. Restoration Ecology, 2002, 10, 156-168.	1.4	76
48	Disturbance and the community structure of stream invertebrates: patch-specific effects and the role of refugia. Freshwater Biology, 1995, 34, 343-356.	1.2	74
49	Managing Critical Transition Zones. Ecosystems, 2001, 4, 452-460.	1.6	73
50	Practices for facilitating interdisciplinary synthetic research: the National Socio-Environmental Synthesis Center (SESYNC). Current Opinion in Environmental Sustainability, 2016, 19, 111-122.	3.1	70
51	Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia. Environmental Science & Technology, 2014, 48, 10552-10560.	4.6	65
52	Beyond infrastructure. Nature, 2010, 467, 534-535.	13.7	64
53	Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnology and Oceanography, 1992, 37, 329-341.	1.6	60
54	Surface Hydrologic Connectivity Between Delmarva Bay Wetlands and Nearby Streams Along a Gradient of Agricultural Alteration. Wetlands, 2015, 35, 41-53.	0.7	50

MARGARET A PALMER

#	Article	IF	CITATIONS
55	Ecological Theory and Restoration Ecology. , 2016, , 3-26.		43
56	Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology, 2012, 57, 1076-1095.	1.2	42
57	Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison. Frontiers in Microbiology, 2015, 6, 522.	1.5	41
58	Aligning restoration science and the law to sustain ecological infrastructure for the future. Frontiers in Ecology and the Environment, 2015, 13, 512-519.	1.9	40
59	Landscape metrics as predictors of hydrologic connectivity between Coastal Plain forested wetlands and streams. Hydrological Processes, 2018, 32, 516-532.	1.1	37
60	Biodiversity in Critical Transition Zones between Terrestrial, Freshwater, and Marine Soils and Sediments: Processes, Linkages, and Management Implications. Ecosystems, 2001, 4, 418-420.	1.6	36
61	Dissolved organic matter variations in coastal plain wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality. Hydrological Processes, 2018, 32, 1664-1681.	1.1	36
62	Evaluation of infiltrationâ€based stormwater management to restore hydrological processes in urban headwater streams. Hydrological Processes, 2017, 31, 3306-3319.	1.1	35
63	Aggregate measures of ecosystem services: can we take the pulse of nature?. Frontiers in Ecology and the Environment, 2005, 3, 56-59.	1.9	34
64	Stream Restoration Databases and Case Studies: A Guide to Information Resources and Their Utility in Advancing the Science and Practice of Restoration. Restoration Ecology, 2006, 14, 177-186.	1.4	31
65	Altered Ecological Flows Blur Boundaries in Urbanizing Watersheds. Ecology and Society, 2009, 14, .	1.0	27
66	Seasonal drivers of geographically isolated wetland hydrology in a low-gradient, Coastal Plain landscape. Journal of Hydrology, 2020, 583, 124608.	2.3	26
67	Effects of Using High Resolution Satelliteâ€Based Inundation Time Series to Estimate Methane Fluxes From Forested Wetlands. Geophysical Research Letters, 2021, 48, e2021GL092556.	1.5	20
68	Evaluating Stream Restoration in the Chesapeake Bay Watershed through Practitioner Interviews. Restoration Ecology, 2007, 15, 563-572.	1.4	18
69	Advocating for Science: Amici Curiae Brief of Wetland and Water Scientists in Support of the Clean Water Rule. Wetlands, 2019, 39, 403-414.	0.7	17
70	Title is missing!. Hydrobiologia, 2001, 455, 19-27.	1.0	16
71	Hydrological Conditions Influence Soil and Methane-Cycling Microbial Populations in Seasonally Saturated Wetlands. Frontiers in Environmental Science, 2020, 8, .	1.5	12
72	Measuring Earth's rivers. Science, 2018, 361, 546-547.	6.0	10

MARGARET A PALMER

4

#	Article	IF	CITATIONS
73	Metazoans from a sandy aquifer: dynamics across a physically and chemically heterogeneous groundwater system. Hydrobiologia, 1994, 287, 195-206.	1.0	9
74	Hydro-ecologic responses to land use in small urbanizing watersheds within the Chesapeake Bay watershed. Geophysical Monograph Series, 2004, , 41-60.	0.1	9
75	Connecting ecosystem services science and policy in the field. Frontiers in Ecology and the Environment, 2021, 19, 519-525.	1.9	8
76	Operationalizing an ecosystem services-based approach for managing river biodiversity. , 2015, , 26-34.		6
77	THE INFLUENCE OF SUBSTRATE HETEROGENEITY ON BIOFILM METABOLISM IN A STREAM ECOSYSTEM. , 2002, 83, 412.		6
78	Bridging Engineering, Ecological, and Geomorphic Science to Enhance Riverine Restoration: Local and National Efforts. , 2004, , 29.		5
79	14 Two model scenarios illustrating the effects of land use and climate change on gravel riverbeds of suburban Maryland, U.S.A Developments in Earth Surface Processes, 2007, 11, 359-381.	2.8	5
80	Physical Protection in Aggregates and Organo-Mineral Associations Contribute to Carbon Stabilization at the Transition Zone of Seasonally Saturated Wetlands. Wetlands, 2022, 42, 1.	0.7	5
81	Response—Environmental Markets. Science, 2009, 326, 1061-1062.	6.0	4

Persistent and Emerging Themes in the Linkage of Theory to Restoration Practice., 2016, 517-531.