
Jose Antonio Perales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, 2014, 32, 422-430.	4.9	282
2	Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Research, 2014, 49, 465-474.	5.3	216
3	Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresource Technology, 2013, 131, 429-436.	4.8	187
4	Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Research, 2018, 139, 19-29.	5.3	166
5	Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 2013, 52, 143-153.	1.6	139
6	Urban wastewater treatment by seven species of microalgae and anÂalgal bloom: Biomass production, N and P removal kinetics andÂharvestability. Water Research, 2015, 83, 42-51.	5.3	133
7	Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: Prediction from a batch experiment. Bioresource Technology, 2013, 127, 456-463.	4.8	130
8	From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 2013, 109, 283-290.	5.1	124
9	Distribution of beach litter along the coastline of CÃ _i diz, Spain. Marine Pollution Bulletin, 2016, 107, 77-87.	2.3	117
10	Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 2017, 24, 477-485.	2.4	105
11	Effect of Nitrogen and Phosphorus Concentration on Their Removal Kinetic in Treated Urban Wastewater by <i>Chlorella Vulgaris</i> . International Journal of Phytoremediation, 2011, 13, 884-896.	1.7	100
12	The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water. Water Research, 1999, 33, 2593-2600.	5.3	90
13	Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Research, 2016, 16, 387-398.	2.4	82
14	Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. Water Research, 2017, 119, 136-149.	5.3	77
15	Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environmental Technology (United Kingdom), 2013, 34, 979-991.	1.2	73
16	Biochemical effects and polycyclic aromatic hydrocarbons (PAHs) in senegal sole (Solea senegalensis) from a Huelva estuary (SW Spain). Ecotoxicology and Environmental Safety, 2010, 73, 1842-1851.	2.9	65
17	Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of the Total Environment, 2017, 589, 66-72.	3.9	65
18	PHOTOBIOTREATMENT: INFLUENCE OF NITROGEN AND PHOSPHORUS RATIO IN WASTEWATER ON GROWTH KINETICS OF <i>SCENEDESMUS OBLIQUUS</i> . International Journal of Phytoremediation, 2013, 15, 774-788.	1.7	60

JOSE ANTONIO PERALES

#	Article	IF	CITATIONS
19	Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. Bioresource Technology, 2015, 181, 90-96.	4.8	56
20	Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecological Engineering, 2013, 57, 226-235.	1.6	47
21	Ecotoxicity and biodegradability of an alkyl ethoxysulphate surfactant in coastal waters. Science of the Total Environment, 2008, 394, 265-274.	3.9	46
22	Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. Journal of Biotechnology, 2014, 178, 32-37.	1.9	39
23	Lipid Production of Microalga Ankistrodesmus falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process. Applied Biochemistry and Biotechnology, 2014, 174, 1471-1483.	1.4	37
24	Biomarkers responses in muscle of Senegal sole (Solea senegalensis) from a heavy metals and PAHs polluted estuary. Marine Pollution Bulletin, 2012, 64, 2097-2108.	2.3	35
25	Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing. Aquatic Toxicology, 2012, 120-121, 27-34.	1.9	34
26	Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. Science of the Total Environment, 2022, 837, 155742.	3.9	34
27	Biodegradation kinetics of LAS in river water. International Biodeterioration and Biodegradation, 1999, 43, 155-160.	1.9	33
28	Biodegradation kinetics of surfactants in seawater. Chemosphere, 1999, 39, 1957-1969.	4.2	33
29	Anaerobic digestion of municipal sewage under psychrophilic conditions. Journal of Cleaner Production, 2018, 198, 931-939.	4.6	33
30	<i>Chlorella stigmatophora</i> for Urban Wastewater Nutrient Removal and CO ₂ Abatement. International Journal of Phytoremediation, 2012, 14, 714-725.	1.7	29
31	Histopathological alterations in Senegal sole, Solea Senegalensis, from a polluted Huelva estuary (SW, Spain). Fish Physiology and Biochemistry, 2013, 39, 523-545.	0.9	28
32	Linear Alkylbenzene Sulphonates: Biodegradability and Isomeric Composition. Bulletin of Environmental Contamination and Toxicology, 1999, 63, 94-100.	1.3	27
33	Using solar and ultraviolet light to degrade PCBs in sand and transformer oils. Chemosphere, 2004, 57, 645-654.	4.2	26
34	Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana. Ecotoxicology, 2008, 17, 738-746.	1.1	25
35	A new analytical technique for the extraction and quantification of microplastics in marine sediments focused on easy implementation and repeatability. Analytical Methods, 2017, 9, 6371-6378.	1.3	25
36	Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration. Science of the Total Environment, 2018, 619-620, 1049-1057.	3.9	25

#	Article	IF	CITATIONS
37	Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation–flocculation. Environmental Technology (United Kingdom), 2019, 40, 342-355.	1.2	25
38	Catalyzed Hydrogen Peroxide Treatment of Polychlorinated Biphenyl Contaminated Sandy Soils. Water, Air, and Soil Pollution, 2004, 154, 57-69.	1.1	23
39	Microbial indicators of faecal contamination in waters and sediments of beach bathing zones. International Journal of Hygiene and Environmental Health, 2008, 211, 510-517.	2.1	20
40	Effect of Concentration on the Biodegradation of a Nonylphenol Polyethoxylate in River Water. Bulletin of Environmental Contamination and Toxicology, 1998, 61, 489-496.	1.3	17
41	Biodegradation kinetics of linear alkylbenzene sulphonates in sea water. Biodegradation, 2006, 18, 63-70.	1.5	17
42	Feral finfish, and their relationships with sediments and seawater, as a tool for risk assessment of PAHs in chronically polluted environments. Science of the Total Environment, 2014, 470-471, 1030-1039.	3.9	16
43	EROD activity and cytochrome P4501A induction in liver and gills of Senegal sole Solea senegalensis from a polluted Huelva Estuary (SW Spain). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 166, 134-144.	1.3	15
44	Sources, transport and fate of PAHs in sediments and superficial water of a chronically polluted semi-enclosed body of seawater: linking of compartments. Environmental Sciences: Processes and Impacts, 2013, 15, 986.	1.7	14
45	The potential of different marine microalgae species to recycle nutrients from recirculating aquaculture systems (RAS) fish farms and produce feed additives. Algal Research, 2021, 58, 102389.	2.4	12
46	Enhancement of aerobic microbial degradation of polychlorinated biphenyl in soil microcosms. Environmental Toxicology and Chemistry, 2003, 22, 699-705.	2.2	11
47	Biodisposition of linear alkylbenzene sulphonates and their associated sulphophenyl carboxilic acid metabolites in sea water. International Biodeterioration and Biodegradation, 2003, 51, 187-194.	1.9	11
48	Biochemical responses of Solea senegalensis after continuous flow exposure to urban effluents. Science of the Total Environment, 2018, 615, 486-497.	3.9	9
49	Recycling "waste―nutrients back into RAS and FTS marine aquaculture facilities from the perspective of the Total Environment, 2021, 762, 143057.	3.9	9
50	Techno-economic analysis of microalgae production for aquafeed in Norway. Algal Research, 2022, 64, 102679.	2.4	9
51	Estimating baseline toxicity of PAHs from marine chronically polluted sediments and bioaccumulation in target organs of fish hypothetically exposed to them: a new tool in risk assessment. Environmental Sciences: Processes and Impacts, 2015, 17, 1331-1339.	1.7	8
52	Factorial analysis of the biokinetic growth parameters and CO ₂ fixation rate of <i>Chlorella vulgaris</i> and <i>Botryococcus braunii</i> in wastewater and synthetic medium. Desalination and Water Treatment, 2014, 52, 4904-4914.	1.0	7
53	Molecular structure and biodegradation kinetics of linear alkylbenzene sulphonates in sea water. Biodegradation, 2007, 18, 567-578.	1.5	6
54	Incorporating dynamic factors to the Environmental Sensitivity Index (ESI) shoreline classification – Estonian and Spanish examples. Journal of Coastal Research, 2014, 70, 235-240.	0.1	6

#	Article	IF	CITATIONS
55	Health status alterations in Ruditapes philippinarum after continuous secondary effluent exposure before and after additional tertiary treatment application. Environmental Pollution, 2018, 235, 720-729.	3.7	6
56	The Zoning of Semi-Enclosed Bodies of Water According to the Sediment Pollution: The Bay of Algeciras as a Case Example. Estuaries and Coasts, 2011, 34, 1129-1139.	1.0	3
57	Microbial Degradation and Chemical Oxidation of Sandy Sediment Contaminated with Polychlorinated Biphenyl. Environmental Engineering Science, 2003, 20, 91-101.	0.8	1
58	Incorporating dynamics factor to the Environmental Sensitivity Index (ESI) shoreline classification – Estonian and Spanish example. Journal of Coastal Research, 2014, 70, 372-377.	0.1	1
59	Catching a Glimpse of the Lack of Harmonization Regarding Techniques of Extraction of Microplastics in Marine Sediments. , 2017, , 151-152.		0