
## Mark M Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7883685/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 2010, 89, S2-S10.                                                                                                                                           | 6.4  | 579       |
| 2  | Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010, 89, S29-S35.                                                                                                 | 6.4  | 395       |
| 3  | Estimating profitability of two biochar production scenarios: slow pyrolysis <i>vs</i> fast pyrolysis.<br>Biofuels, Bioproducts and Biorefining, 2011, 5, 54-68.                                                                              | 3.7  | 230       |
| 4  | Distributed processing of biomass to bioâ€oil for subsequent production of Fischerâ€Tropsch liquids.<br>Biofuels, Bioproducts and Biorefining, 2008, 2, 229-238.                                                                              | 3.7  | 155       |
| 5  | Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass and Bioenergy, 2015, 72, 45-54.                                                                          | 5.7  | 136       |
| 6  | Comparative economics of biorefineries based on the biochemical and thermochemical platforms.<br>Biofuels, Bioproducts and Biorefining, 2007, 1, 49-56.                                                                                       | 3.7  | 129       |
| 7  | Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green<br>Chemistry, 2014, 16, 4144-4155.                                                                                                              | 9.0  | 106       |
| 8  | The impacts of biomass properties on pyrolysis yields, economic and environmental performance of<br>the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 2017,<br>241, 959-968.                        | 9.6  | 88        |
| 9  | Solar thermal catalytic reforming of natural gas: a review on chemistry, catalysis and system design.<br>Catalysis Science and Technology, 2015, 5, 1991-2016.                                                                                | 4.1  | 78        |
| 10 | Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production.<br>Bioresource Technology, 2015, 196, 49-56.                                                                                           | 9.6  | 70        |
| 11 | Catalytic pyrolysis of amino acids: Comparison of aliphatic amino acid and cyclic amino acid. Energy<br>Conversion and Management, 2016, 112, 220-225.                                                                                        | 9.2  | 69        |
| 12 | A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels. Fuel, 2014, 128, 104-112.                                                                                                                        | 6.4  | 64        |
| 13 | Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass.<br>Green Chemistry, 2019, 21, 5980-5989.                                                                                                  | 9.0  | 59        |
| 14 | Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels, 2016, 7, 57-67.                                                                                 | 2.4  | 57        |
| 15 | Toward an Integrated Conversion of 5-Hydroxymethylfurfural and Ethylene for the Production of Renewable p-Xylene. CheM, 2018, 4, 2212-2227.                                                                                                   | 11.7 | 56        |
| 16 | More than ethanol: a technoâ€economic analysis of a corn stoverâ€ethanol biorefinery integrated with a<br>hydrothermal liquefaction process to convert lignin into biochemicals. Biofuels, Bioproducts and<br>Biorefining, 2018, 12, 497-509. | 3.7  | 51        |
| 17 | Numerical study of particle mixing in a lab-scale screw mixer using the discrete element method.<br>Powder Technology, 2017, 308, 334-345.                                                                                                    | 4.2  | 46        |
| 18 | Techno-Economic Analysis of the Stabilization of Bio-Oil Fractions for Insertion into Petroleum<br>Refineries. ACS Sustainable Chemistry and Engineering, 2017, 5, 1528-1537.                                                                 | 6.7  | 45        |

MARK M WRIGHT

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrocarbon and Ammonia Production from Catalytic Pyrolysis of Sewage Sludge with Acid<br>Pretreatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 1819-1826.                                                     | 6.7  | 44        |
| 20 | Catalytic fast pyrolysis of duckweed: Effects of pyrolysis parameters and optimization of aromatic production. Journal of Analytical and Applied Pyrolysis, 2015, 112, 29-36.                                              | 5.5  | 42        |
| 21 | Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste<br>Management, 2019, 89, 154-164.                                                                                         | 7.4  | 41        |
| 22 | Economics of biofuels and bioproducts from an integrated pyrolysis biorefinery. Biofuels,<br>Bioproducts and Biorefining, 2016, 10, 790-803.                                                                               | 3.7  | 36        |
| 23 | Particle scale modeling of heat transfer in granular flows in a double screw reactor. Powder<br>Technology, 2018, 335, 18-34.                                                                                              | 4.2  | 36        |
| 24 | Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar<br>Sequestration. Environmental Science & Technology, 2015, 49, 14688-14695.                                                 | 10.0 | 33        |
| 25 | Techno-economic impacts of shale gas on cellulosic biofuel pathways. Fuel, 2014, 117, 989-995.                                                                                                                             | 6.4  | 32        |
| 26 | A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Reviews in Chemical Engineering, 2020, 36, 401-421.                                                              | 4.4  | 32        |
| 27 | Product Selection and Supply Chain Optimization for Fast Pyrolysis and Biorefinery System. Industrial<br>& Engineering Chemistry Research, 2014, 53, 19987-19999.                                                          | 3.7  | 31        |
| 28 | Learning rates and their impacts on the optimal capacities and production costs of biorefineries.<br>Biofuels, Bioproducts and Biorefining, 2015, 9, 82-94.                                                                | 3.7  | 31        |
| 29 | Comparative Techno-economic, Uncertainty and Life Cycle Analysis of Lignocellulosic Biomass Solvent<br>Liquefaction and Sugar Fermentation to Ethanol. ACS Sustainable Chemistry and Engineering, 2018, 6,<br>16515-16524. | 6.7  | 29        |
| 30 | Investigating the technoâ€economic tradeâ€offs of hydrogen source using a response surface model of<br>dropâ€in biofuel production via bioâ€oil upgrading. Biofuels, Bioproducts and Biorefining, 2012, 6, 503-520.        | 3.7  | 28        |
| 31 | Evaluating lignin valorization <i>via</i> pyrolysis and vapor-phase hydrodeoxygenation for production of aromatics and alkenes. Green Chemistry, 2020, 22, 2513-2525.                                                      | 9.0  | 25        |
| 32 | Regional technoâ€economic and lifeâ€cycle analysis of the pyrolysisâ€bioenergyâ€biochar platform for<br>carbonâ€negative energy. Biofuels, Bioproducts and Biorefining, 2019, 13, 1428-1438.                               | 3.7  | 23        |
| 33 | A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and<br>Mass Transfer, 2020, 150, 119308.                                                                                 | 4.8  | 23        |
| 34 | Lifecycle energy consumption and greenhouse gas emissions from corncob ethanol in China. Biofuels,<br>Bioproducts and Biorefining, 2018, 12, 1037-1046.                                                                    | 3.7  | 20        |
| 35 | Negative Emission Energy Production Technologies: A Technoâ€Economic and Life Cycle Analyses Review.<br>Energy Technology, 2020, 8, 1900871.                                                                               | 3.8  | 20        |
| 36 | Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel. Energy, 2020, 211, 119031.                                                         | 8.8  | 16        |

MARK M WRIGHT

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A lignin-first strategy to recover hydroxycinnamic acids and improve cellulosic ethanol production from corn stover. Biomass and Bioenergy, 2020, 138, 105579.                                                                | 5.7  | 16        |
| 38 | Understanding Uncertainties in the Economic Feasibility of Transportation Fuel Production using Biomass Gasification and Mixed Alcohol Synthesis. Energy Technology, 2016, 4, 441-448.                                        | 3.8  | 15        |
| 39 | Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending<br>Wall in Biofuel Production. Environmental Science & Technology, 2015, 49, 8183-8192.                                    | 10.0 | 14        |
| 40 | The US bioeconomy at the intersection of technology, policy, and education. Biofuels, Bioproducts and Biorefining, 2022, 16, 9-26.                                                                                            | 3.7  | 13        |
| 41 | Recovery of resin acids from fast pyrolysis of pine. Journal of Analytical and Applied Pyrolysis, 2019, 138, 132-136.                                                                                                         | 5.5  | 12        |
| 42 | Machine Learning Reduced Order Model for Cost and Emission Assessment of a Pyrolysis System.<br>Energy & Fuels, 2021, 35, 9950-9960.                                                                                          | 5.1  | 12        |
| 43 | Application of Hydroprocessing, Fermentation, and Anaerobic Digestion in a Carbon-Negative Pyrolysis<br>Refinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 16413-16421.                                            | 6.7  | 10        |
| 44 | A Framework for Defining the Economic Feasibility of Cellulosic Biofuel Pathways. Biofuels, 2014, 5, 579-590.                                                                                                                 | 2.4  | 9         |
| 45 | Commentary on â€~Current economic obstacles to biochar use in agriculture and climate change<br>mitigation' regarding uncertainty, context-specificity and alternative value sources. Carbon<br>Management, 2017, 8, 215-217. | 2.4  | 7         |
| 46 | Effect of thermophysical properties of heat carriers on performance of a laboratory-scale auger pyrolyzer. Fuel Processing Technology, 2018, 176, 182-189.                                                                    | 7.2  | 7         |
| 47 | Technoeconomic Analysis of a Hybrid Biomass Thermochemical and Electrochemical Conversion<br>System. Energy Technology, 2018, 6, 178-187.                                                                                     | 3.8  | 6         |
| 48 | An optimization model for sequential fast pyrolysis facility location-allocation under renewable fuel standard. Energy, 2015, 93, 1165-1172.                                                                                  | 8.8  | 4         |