List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7883456/publications.pdf Version: 2024-02-01

Ιμήζενς Χιι

#	Article	IF	CITATIONS
1	An automatic control device for negative pressure irrigation for continuous low-rate water supply at constant soil wetting. Biosystems Engineering, 2022, 213, 175-181.	1.9	4
2	Can ensemble machine learning be used to predict the groundwater level dynamics of farmland under future climate: a 10-year study on Huaibei Plain. Environmental Science and Pollution Research, 2022, 29, 44653-44667.	2.7	12
3	Global benefits of nonâ€continuous flooding to reduce greenhouse gases and irrigation water use without rice yield penalty. Global Change Biology, 2022, 28, 3636-3650.	4.2	23
4	Subsurface Drip Irrigation with Emitters Placed at Suitable Depth Can Mitigate N2O Emissions and Enhance Chinese Cabbage Yield under Greenhouse Cultivation. Agronomy, 2022, 12, 745.	1.3	8
5	Migration and Removal of Labile Cadmium Contaminants in Paddy Soils by Electrokinetic Remediation without Changing Soil pH. International Journal of Environmental Research and Public Health, 2022, 19, 3812.	1.2	4
6	Win-win for monosodium glutamate industry and paddy agriculture: Replacing chemical nitrogen with liquid organic fertilizer from wastewater mitigates reactive nitrogen losses while sustaining yields. Journal of Cleaner Production, 2022, 347, 131287.	4.6	13
7	Ammonium (NH4+) transport processes in the riverbank under varying hydrologic conditions. Science of the Total Environment, 2022, 826, 154097.	3.9	11
8	Enhanced N2O Emissions from Winter Wheat Field Induced by Winter Irrigation in the North China Plain. Agronomy, 2022, 12, 955.	1.3	1
9	N2O dynamics in the hyporheic zone due to ripple migration. Journal of Hydrology, 2022, 610, 127891.	2.3	10
10	Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biology and Biochemistry, 2022, 169, 108684.	4.2	32
11	Automatic variable rate fertilisation system for improved fertilisation uniformity in paddy fields. Biosystems Engineering, 2022, 219, 56-67.	1.9	5
12	Coupling machine learning and weather forecast to predict farmland flood disaster: A case study in Yangtze River basin. Environmental Modelling and Software, 2022, 155, 105436.	1.9	23
13	Managing Fertigation Frequency and Level to Mitigate N2O and CO2 Emissions and NH3 Volatilization from Subsurface Drip-Fertigated Field in a Greenhouse. Agronomy, 2022, 12, 1414.	1.3	8
14	Biochar partially offset the increased ammonia volatilization from salt-affected soil. Archives of Agronomy and Soil Science, 2021, 67, 1202-1216.	1.3	3
15	Neural network soil moisture model for irrigation scheduling. Computers and Electronics in Agriculture, 2021, 180, 105801.	3.7	29
16	Indicators for evaluating trends of air humidification in arid regions under circumstance of climate change: Relative humidity (RH) vs. Actual water vapour pressure (ea). Ecological Indicators, 2021, 121, 107043.	2.6	5
17	A process-based coupled model of stomatal conductance–photosynthesis–transpiration during leaf ontogeny for water-saving irrigated rice. Photosynthesis Research, 2021, 147, 145-160.	1.6	1
18	Nitrate removal processes in the riverbed during a singleâ€peak flood event. Hydrological Processes, 2021, 35, e14041.	1.1	9

#	Article	IF	CITATIONS
19	Differential response of rice evapotranspiration to varying patterns of warming. Agricultural and Forest Meteorology, 2021, 298-299, 108293.	1.9	14
20	Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management, 2021, 246, 106699.	2.4	17
21	Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields. International Journal of Environmental Research and Public Health, 2021, 18, 3348.	1.2	17
22	Temperature Influenced the Comammox Community Composition in Drinking Water and Wastewater Treatment Plants. Microbial Ecology, 2021, 82, 870-884.	1.4	21
23	A twoâ€layer model for studying 2D dissolved pollutant runoff over impermeable surfaces. Hydrological Processes, 2021, 35, e14152.	1.1	2
24	Modeling water consumption, N fates, and rice yield for water-saving and conventional rice production systems. Soil and Tillage Research, 2021, 209, 104944.	2.6	26
25	Evaluating the Neural Network Ensemble Method in Predicting Soil Moisture in Agricultural Fields. Agronomy, 2021, 11, 1521.	1.3	5
26	N ₂ O Production and Consumption Processes in a Salinityâ€Impacted Hyporheic Zone. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006512.	1.3	10
27	Modeling Climate Change Effects on Rice Yield and Soil Carbon under Variable Water and Nutrient Management. Sustainability, 2021, 13, 568.	1.6	16
28	Optimal Operation Model of Drainage Works for Minimizing Waterlogging Loss in Paddy Fields. Water (Switzerland), 2021, 13, 2811.	1.2	4
29	Evaluation of Improved Model to Accurately Monitor Soil Water Content. Water (Switzerland), 2021, 13, 3441.	1.2	Ο
30	Evaporative fraction and its application in estimating daily evapotranspiration of water-saving irrigated rice field. Journal of Hydrology, 2020, 584, 124317.	2.3	15
31	Salinity-induced concomitant increases in soil ammonia volatilization and nitrous oxide emission. Geoderma, 2020, 361, 114053.	2.3	37
32	Enhancing Nitrogen and Phosphorus Removal by Applying Effective Microorganisms to Constructed Wetlands. Water (Switzerland), 2020, 12, 2443.	1.2	10
33	Enhanced N2O Production Induced by Soil Salinity at a Specific Range. International Journal of Environmental Research and Public Health, 2020, 17, 5169.	1.2	4
34	A physically-based model for dissolved pollutant transport over impervious surfaces. Journal of Hydrology, 2020, 590, 125478.	2.3	7
35	Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based. Journal of Hydrology, 2020, 590, 125435.	2.3	19
36	Decision support system for irrigation scheduling based on Raspberry-Pi embedded with neural network. , 2020, , .		1

#	Article	IF	CITATIONS
37	Density-dependent solute transport in a layered hyporheic zone. Advances in Water Resources, 2020, 142, 103645.	1.7	14
38	Vertical profile of photosynthetic light response within rice canopy. International Journal of Biometeorology, 2020, 64, 1699-1708.	1.3	7
39	Response of Soil Respiration and Microbial Biomass to Soil Salinity under Different Water Content in the Coastal Areas of Eastern China. Eurasian Soil Science, 2020, 53, 82-89.	0.5	4
40	Irrigation Scheduling Approaches and Applications: A Review. Journal of Irrigation and Drainage Engineering - ASCE, 2020, 146, .	0.6	94
41	Nitrification inhibitor DMPP offsets the increase in N2O emission induced by soil salinity. Biology and Fertility of Soils, 2020, 56, 1211-1217.	2.3	13
42	Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China. Journal of Environmental Management, 2020, 271, 111029.	3.8	17
43	Comment on "Oxygen Regulates Nitrous Oxide Production Directly in Agricultural Soils― Environmental Science & Technology, 2020, 54, 2558-2559.	4.6	1
44	Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. International Journal of Environmental Research and Public Health, 2020, 17, 333.	1.2	45
45	Storing and removing nitrogen in drainage from paddy field by using aquatic crops wetland. Paddy and Water Environment, 2020, 18, 587-594.	1.0	4
46	Temporal Upscaling of Rice Evapotranspiration Based on Canopy Resistance in a Water-Saving Irrigated Rice Field. Journal of Hydrometeorology, 2020, 21, 1639-1654.	0.7	1
47	A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification. Agricultural Water Management, 2019, 223, 105705.	2.4	7
48	A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 2019, 9, 9909.	1.6	18
49	Ammonia volatilization and nitrogen leaching following top-dressing of urea from water-saving irrigated rice field: impact of two-split surge irrigation. Paddy and Water Environment, 2019, 17, 45-51.	1.0	10
50	Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation. Environmental Science and Pollution Research, 2019, 26, 8303-8311.	2.7	13
51	Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization. Agricultural Water Management, 2019, 221, 231-237.	2.4	23
52	Optimizing Nitrogen Options for Improving Nitrogen Use Efficiency of Rice under Different Water Regimes. Agronomy, 2019, 9, 39.	1.3	23
53	Surface Energy Partitioning and Evaporative Fraction in a Water-Saving Irrigated Rice Field. Atmosphere, 2019, 10, 51.	1.0	12
54	Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmospheric Environment, 2019, 200, 69-77.	1.9	87

#	Article	IF	CITATIONS
55	Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China. Agricultural Water Management, 2019, 213, 289-297.	2.4	42
56	Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation. Environmental Science and Pollution Research, 2018, 25, 9958-9968.	2.7	13
57	Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteorology and Atmospheric Physics, 2018, 130, 227-240.	0.9	19
58	Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions. Agricultural Water Management, 2018, 196, 154-161.	2.4	14
59	Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering. Atmospheric Environment, 2018, 173, 248-255.	1.9	16
60	Reducing Surface Wetting Proportion of Soils Irrigated by Subsurface Drip Irrigation Can Mitigate Soil N2O Emission. International Journal of Environmental Research and Public Health, 2018, 15, 2747.	1.2	7
61	Water Salinity Should Be Reduced for Irrigation to Minimize Its Risk of Increased Soil N2O Emissions. International Journal of Environmental Research and Public Health, 2018, 15, 2114.	1.2	9
62	Effects of Biochar Amendment on CO2 Emissions from Paddy Fields under Water-Saving Irrigation. International Journal of Environmental Research and Public Health, 2018, 15, 2580.	1.2	22
63	Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation. Sustainability, 2018, 10, 1371.	1.6	33
64	Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation. PLoS ONE, 2018, 13, e0204597.	1.1	15
65	Soil degassing during watering: An overlooked soil N2O emission process. Environmental Pollution, 2018, 242, 257-263.	3.7	5
66	Vapor Condensation in Rice Fields and Its Contribution to Crop Evapotranspiration in the Subtropical Monsoon Climate of China. Journal of Hydrometeorology, 2018, 19, 1043-1057.	0.7	11
67	Partial wetting irrigation resulted in non-uniformly low nitrous oxide emissions from soil. Atmospheric Environment, 2017, 161, 200-209.	1.9	7
68	Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmosfera, 2017, 30, 39-52.	0.3	34
69	Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation. Agricultural Water Management, 2017, 182, 55-66.	2.4	39
70	Development of an irrigation scheduling software based on model predicted crop water stress. Computers and Electronics in Agriculture, 2017, 143, 208-221.	3.7	58
71	Effect of water management on soil respiration and NEE of paddy fields in Southeast China. Paddy and Water Environment, 2017, 15, 787-796.	1.0	18
72	Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology, 2017, 232, 89-105.	1.9	62

#	Article	IF	CITATIONS
73	Validation of dual-crop coefficient method for calculation of rice evapotranspiration under drying–wetting cycle condition. Paddy and Water Environment, 2017, 15, 381-393.	1.0	10
74	Diurnal pattern of nitrous oxide emissions from soils under different vertical moisture distribution conditions. Chilean Journal of Agricultural Research, 2016, 76, 84-92.	0.4	6
75	Reduction of Non-Point Source Pollution from Paddy Fields through Controlled Drainage in an Aquatic Vegetable Wetland-Ecological Ditch System. Irrigation and Drainage, 2016, 65, 734-740.	0.8	14
76	Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice–winter wheat rotation systems in Southeast China. Ecological Engineering, 2016, 86, 239-246.	1.6	29
77	Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: a case study in Guizhou Province, China. Meteorology and Atmospheric Physics, 2016, 128, 677-688.	0.9	25
78	Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China. Water Resources Management, 2016, 30, 2055-2073.	1.9	14
79	Forecasting daily reference evapotranspiration using the Blaney–Criddle model and temperature forecasts. Archives of Agronomy and Soil Science, 2016, 62, 790-805.	1.3	26
80	Influence of Watering Methods on the Short-Term Pulse Emissions of Nitrous Oxide from Disturbed Horticultural Soil. Communications in Soil Science and Plant Analysis, 2015, 46, 2688-2706.	0.6	1
81	Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China. Archives of Agronomy and Soil Science, 2015, 61, 415-426.	1.3	20
82	A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency. Environmental Science and Pollution Research, 2015, 22, 4406-4417.	2.7	44
83	Effect of controlled irrigation and drainage on nitrogen leaching losses from paddy fields. Paddy and Water Environment, 2015, 13, 303-312.	1.0	33
84	Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy and Water Environment, 2015, 13, 71-80.	1.0	60
85	Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	16
86	Binding forms and availability of Cd and Cr in paddy soil under non-flooding controlled irrigation. Paddy and Water Environment, 2014, 12, 213-222.	1.0	14
87	Controlled irrigation and drainage of a rice paddy field reduced global warming potential of its gas emissions. Archives of Agronomy and Soil Science, 2014, 60, 151-161.	1.3	10
88	Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agricultural Water Management, 2014, 146, 249-261.	2.4	85
89	Influence of water management on the mobility and fate of copper in rice field soil. Journal of Soils and Sediments, 2013, 13, 1180-1188.	1.5	18
90	Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China. Archives of Agronomy and Soil Science, 2013, 59, 845-858.	1.3	44

#	Article	IF	CITATIONS
91	Lasting effects of controlled irrigation during rice-growing season on nitrous oxide emissions from winter wheat croplands in Southeast China. Paddy and Water Environment, 2013, 11, 583-591.	1.0	8
92	Prediction of daily reference evapotranspiration by a multiple regression method based on weather forecast data. Archives of Agronomy and Soil Science, 2013, 59, 1487-1501.	1.3	6
93	Nitrogen Loss from Paddy Field with Different Water and Nitrogen Managements in Taihu Lake Region of China. Communications in Soil Science and Plant Analysis, 2013, 44, 2393-2407.	0.6	38
94	Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil and Tillage Research, 2013, 126, 169-176.	2.6	45
95	Estimating the Effects of Climatic Variability and Human Activities on Streamflow in the Hutuo River Basin, China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 422-430.	0.8	39
96	Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements. Scientific World Journal, The, 2013, 2013, 1-9.	0.8	11
97	Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 2012, 89, 884-892.	4.2	146
98	Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agricultural Water Management, 2012, 104, 184-192.	2.4	187
99	Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resources Research, 2012, 48, .	1.7	110
100	Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Physics and Chemistry of the Earth, 2012, 53-54, 30-37.	1.2	98
101	Error of Saturation Vapor Pressure Calculated by Different Formulas and Its Effect on Calculation of Reference Evapotranspiration in High Latitude Cold Region. Procedia Engineering, 2012, 28, 43-48.	1.2	45
102	Changes of Rice Water Demand and Irrigation Water Requirement in Southeast China under Future Climate change. Procedia Engineering, 2012, 28, 341-345.	1.2	19
103	INTEGRATED IRRIGATION AND DRAINAGE PRACTICES TO ENHANCE WATER PRODUCTIVITY AND REDUCE POLLUTION IN A RICE PRODUCTION SYSTEM. Irrigation and Drainage, 2012, 61, 285-293.	0.8	27
104	Spatial and Temporal Characteristics of Reference Evapotranspiration Trends in the Haihe River Basin, China. Journal of Hydrologic Engineering - ASCE, 2011, 16, 239-252.	0.8	67
105	Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy and Water Environment, 2011, 9, 403-411.	1.0	63
106	Field experiments on greenhouse gas emissions and nitrogen and phosphorus losses from rice paddy with efficient irrigation and drainage management. Science China Technological Sciences, 2011, 54, 1581-1587.	2.0	36
107	Nitrogen Wet Deposition and Its Correlation with Ammonia Volatilization Losses from Rice Paddy during Crop Period: A Case Study in Taihu Lake Region. , 2009, , .		0
108	Variation in rice water requirement and its influencing factors in Poyang Lake basin during the past 30 years *. Irrigation and Drainage, 0, , .	0.8	1

#	Article	IF	CITATIONS
109	Optimal nitrogen rate for rice production by traded-off analysis between rice yield and environmental cost: a case study in Tai Lake region. Archives of Agronomy and Soil Science, 0, , 1-16.	1.3	ο