
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7882790/publications.pdf Version: 2024-02-01

ΗΛΝΙΙΝΙΙΙΙ

#	Article	IF	CITATIONS
1	Cerebellar Continuous Theta Burst Stimulation Facilitates Auditory–Vocal Integration in Spinocerebellar Ataxia. Cerebral Cortex, 2022, 32, 455-466.	2.9	13
2	Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production. Cerebral Cortex, 2022, 33, 11-22.	2.9	7
3	Linking Cortical Morphology to Interindividual Variability in Auditory Feedback Control of Vocal Production. Cerebral Cortex, 2021, 31, 2932-2943.	2.9	2
4	Neurobehavioral Effects of LSVT® LOUD on Auditory-Vocal Integration in Parkinson's Disease: A Preliminary Study. Frontiers in Neuroscience, 2021, 15, 624801.	2.8	11
5	A Causal Role of the Cerebellum in Auditory Feedback Control of Vocal Production. Cerebellum, 2021, 20, 584-595.	2.5	11
6	Top–Down Inhibitory Mechanisms Underlying Auditory–Motor Integration for Voice Control: Evidence by TMS. Cerebral Cortex, 2020, 30, 4515-4527.	2.9	24
7	Event-related potential correlates of auditory feedback control of vocal production in experienced singers. NeuroReport, 2020, 31, 325-331.	1.2	1
8	Cerebellar contribution to auditory feedback control of speech production: Evidence from patients with spinocerebellar ataxia. Human Brain Mapping, 2019, 40, 4748-4758.	3.6	28
9	Decreased Gray-Matter Volume in Insular Cortex as a Correlate of Singers' Enhanced Sensorimotor Control of Vocal Production. Frontiers in Neuroscience, 2019, 13, 815.	2.8	13
10	External cueing facilitates auditory-motor integration for speech control in individuals with Parkinson's disease. Neurobiology of Aging, 2019, 76, 96-105.	3.1	12
11	Hybrid Convolutional Recurrent Neural Networks Outperform CNN and RNN in Task-state EEG Detection for Parkinson's Disease. , 2019, , .		31
12	Effect of Temporal Lobe Epilepsy on Auditory-motor Integration for Vocal Pitch Regulation: Evidence from Brain Functional Network Analysis. , 2019, 2019, 3849-3853.		1
13	Predicting auditory feedback control of speech production from subregional shape of subcortical structures. Human Brain Mapping, 2018, 39, 459-471.	3.6	13
14	Effects of COMT polymorphism on the cortical processing of vocal pitch regulation. NeuroReport, 2018, 29, 1530-1536.	1.2	0
15	Aging and Sex Influence Cortical Auditory-Motor Integration for Speech Control. Frontiers in Neuroscience, 2018, 12, 749.	2.8	12
16	Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI. Frontiers in Neuroscience, 2018, 12, 942.	2.8	6
17	The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Frontiers in Neuroscience, 2018, 12, 666.	2.8	5
18	Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates. Frontiers in Neuroscience, 2018, 12, 113.	2.8	14

#	Article	IF	CITATIONS
19	Effects of combination of linguistic and musical pitch experience on subcortical pitch encoding. Journal of Neurolinguistics, 2018, 47, 145-155.	1.1	14
20	Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory. Journal of Neuroscience, 2017, 37, 10323-10333.	3.6	36
21	Menstrual Cycle Phase Modulates Auditory-Motor Integration for Vocal Pitch Regulation. Frontiers in Neuroscience, 2016, 10, 600.	2.8	7
22	Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control. Scientific Reports, 2016, 6, 28909.	3.3	7
23	Regional homogeneity of intrinsic brain activity correlates with auditory-motor processing of vocal pitch errors. Neurolmage, 2016, 142, 565-575.	4.2	16
24	The impact of parkinson's disease on the cortical mechanisms that support auditory–motor integration for voice control. Human Brain Mapping, 2016, 37, 4248-4261.	3.6	64
25	Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors. Scientific Reports, 2015, 5, 13134.	3.3	16
26	Attention Modulates Cortical Processing of Pitch Feedback Errors in Voice Control. Scientific Reports, 2015, 5, 7812.	3.3	21
27	Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation. Scientific Reports, 2015, 5, 16562.	3.3	11
28	Working memory training to improve speech perception in noise across languages. Journal of the Acoustical Society of America, 2015, 137, 3477-3486.	1.1	32
29	Selective and divided attention modulates auditory–vocal integration in the processing of pitch feedback errors. European Journal of Neuroscience, 2015, 42, 1895-1904.	2.6	27
30	Sensorimotor control of vocal pitch production in Parkinson's disease. Brain Research, 2013, 1527, 99-107.	2.2	64
31	ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience, 2013, 240, 176-185.	2.3	55
32	Developmental sex-specific change in auditory–vocal integration: ERP evidence in children. Clinical Neurophysiology, 2013, 124, 503-513.	1.5	11
33	Neurophysiological evidence of differential mechanisms involved in producing opposing and following responses to altered auditory feedback. Clinical Neurophysiology, 2013, 124, 2161-2171.	1.5	19
34	The developmental trajectory of vocal and eventâ€related potential responses to frequencyâ€altered auditory feedback. European Journal of Neuroscience, 2013, 38, 3189-3200.	2.6	32
35	Dynamics of Vocalization-Induced Modulation of Auditory Cortical Activity at Mid-utterance. PLoS ONE, 2013, 8, e60039.	2.5	12
36	Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neuroscience, 2012, 13, 55.	1.9	28

#	Article	IF	CITATIONS
37	ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization. Brain and Language, 2012, 121, 25-34.	1.6	46
38	Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease. PLoS ONE, 2012, 7, e33629.	2.5	87
39	Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback. Clinical Neurophysiology, 2011, 122, 951-957.	1.5	88
40	Time-dependent Neural Processing of Auditory Feedback during Voice Pitch Error Detection. Journal of Cognitive Neuroscience, 2011, 23, 1205-1217.	2.3	76
41	Laryngeal electromyographic responses to perturbations in voice pitch auditory feedback. Journal of the Acoustical Society of America, 2011, 129, 3946-3954.	1.1	21
42	Auditory Feedback Control of Vocal Pitch during Sustained Vocalization: A Cross-Sectional Study of Adult Aging. PLoS ONE, 2011, 6, e22791.	2.5	31
43	Enhanced neural responses to self-triggered voice pitch feedback perturbations. NeuroReport, 2010, 21, 527-531.	1.2	15
44	Voice fundamental frequency modulates vocal response to pitch perturbations during English speech. Journal of the Acoustical Society of America, 2010, 127, EL1-EL5.	1.1	21
45	Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization. Journal of the Acoustical Society of America, 2010, 128, EL355-EL360.	1.1	20
46	Auditory feedback control of voice fundamental frequency in school children. Journal of the Acoustical Society of America, 2010, 128, 1306-1312.	1,1	25
47	Effect of tonal native language on voice fundamental frequency responses to pitch feedback perturbations during sustained vocalizations. Journal of the Acoustical Society of America, 2010, 128, 3739-3746.	1.1	37
48	Audio-vocal interactions in the mammalian brain. Handbook of Behavioral Neuroscience, 2010, 19, 393-402.	0.7	4
49	Age-related differences in vocal responses to pitch feedback perturbations: A preliminary study. Journal of the Acoustical Society of America, 2010, 127, 1042-1046.	1.1	39
50	Attenuation of vocal responses to pitch perturbations during Mandarin speech. Journal of the Acoustical Society of America, 2009, 125, 2299-2306.	1.1	26
51	Formant Characteristics of Vowels Produced by Mandarin Esophageal Speakers. Journal of Voice, 2009, 23, 255-260.	1.5	21
52	Long-term average spectral characteristics of Cantonese alaryngeal speech. Auris Nasus Larynx, 2009, 36, 571-577.	1.2	15
53	Vocalization-induced enhancement of the auditory cortex responsiveness during voice FO feedback perturbation. Clinical Neurophysiology, 2009, 120, 1303-1312.	1.5	131
54	Interactions between auditory and somatosensory feedback for voice F 0 control. Experimental Brain Research, 2008, 187, 613-621.	1.5	115

#	Article	IF	CITATIONS
55	The Effect of Tonal Changes on Voice Onset Time in Mandarin Esophageal Speech. Journal of Voice, 2008, 22, 210-218.	1.5	13
56	Effects of perturbation magnitude and voice F level on the pitch-shift reflex. Journal of the Acoustical Society of America, 2007, 122, 3671-3677.	1.1	122
57	Voice F0 responses to pitch-shifted voice feedback during English speech. Journal of the Acoustical Society of America, 2007, 121, 1157-1163.	1.1	141
58	Compensatory responses to loudness-shifted voice feedback during production of Mandarin speech. Journal of the Acoustical Society of America, 2007, 122, 2405-2412.	1.1	23
59	Effects of Place of Articulation and Aspiration on Voice Onset Time in Mandarin Esophageal Speech. Folia Phoniatrica Et Logopaedica, 2007, 59, 147-154.	1.1	21
60	Electrolarynx in voice rehabilitation. Auris Nasus Larynx, 2007, 34, 327-332.	1.2	63
61	Enhancement of electrolarynx speech based on auditory masking. IEEE Transactions on Biomedical Engineering, 2006, 53, 865-874.	4.2	47
62	Tonal Perceptions in Normal Laryngeal, Esophageal, and Electrolaryngeal Speech of Mandarin. Folia Phoniatrica Et Logopaedica, 2006, 58, 340-352.	1.1	19
63	Application of spectral subtraction method on enhancement of electrolarynx speech. Journal of the Acoustical Society of America, 2006, 120, 398-406.	1.1	18
64	Acoustic characteristics of Mandarin esophageal speech. Journal of the Acoustical Society of America, 2005, 118, 1016-1025.	1.1	19
65	Features of Listeners Affecting the Perceptions of Mandarin Electrolaryngeal Speech. Folia Phoniatrica Et Logopaedica, 2005, 57, 9-19.	1.1	9
66	Aerodynamic characteristics of laryngectomees breathing quietly and speaking with the electrolarynx. Journal of Voice, 2004, 18, 567-577.	1.5	13
67	Enhancement of electrolarynx speech using adaptive noise cancelling based on independent component analysis. Medical and Biological Engineering and Computing, 2003, 41, 670-678.	2.8	26
68	Experience-dependent Influence of Music and Language on Lexical Pitch Learning Is Not Additive. , 0, , .		6