Annika Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7882769/publications.pdf

Version: 2024-02-01

147801 182427 12,544 51 31 51 citations h-index g-index papers 61 61 61 16434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Signature of Brain Arteriovenous Malformation Hemorrhage: A Systematic Review. World Neurosurgery, 2022, 157, 143-151.	1.3	6
2	Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 264-279.	4.3	25
3	The Interplay Between Brain Vascular Calcification and Microglia. Frontiers in Aging Neuroscience, 2022, 14, 848495.	3.4	10
4	Public Volume Electron Microscopy Data: An Essential Resource to Study the Brain Microvasculature. Frontiers in Cell and Developmental Biology, 2022, 10, 849469.	3.7	15
5	Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circulation Research, 2021, 128, e46-e62.	4.5	98
6	Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling. Neuro-Oncology, 2021, 23, 2095-2106.	1.2	23
7	Microglia control small vessel calcification via TREM2. Science Advances, 2021, 7, .	10.3	22
8	The dural sinus hub: more than just a brain drain. Cell, 2021, 184, 858-860.	28.9	5
9	Pericytes regulate vascular immune homeostasis in the CNS. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	86
10	Distinct signatures of calcium activity in brain mural cells. ELife, 2021, 10, .	6.0	31
11	Characterization of the blood–brain barrier in genetically diverse laboratory mouse strains. Fluids and Barriers of the CNS, 2021, 18, 34.	5.0	18
12	Reply: Osteoclast imbalance in primary familial brain calcification: evidence for its role in brain calcification. Brain, 2020, 143, e2-e2.	7.6	1
13	Outcome Comparison Between Surgically Treated Brain Arteriovenous Malformation Hemorrhage and Spontaneous Intracerebral Hemorrhage. World Neurosurgery, 2020, 139, e807-e811.	1.3	4
14	Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity. Circulation Research, 2020, 127, 466-482.	4.5	103
15	SWI and phase imaging reveal intracranial calcifications in the P301L mouse model of human tauopathy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 769-781.	2.0	16
16	New Insights in the Complexity and Functionality of the Neurovascular Unit. Handbook of Experimental Pharmacology, 2020, , 33-57.	1.8	5
17	Pericytes in Primary Familial Brain Calcification. Advances in Experimental Medicine and Biology, 2019, 1147, 247-264.	1.6	10
18	Ossified blood vessels in primary familial brain calcification elicit a neurotoxic astrocyte response. Brain, 2019, 142, 885-902.	7.6	50

#	Article	lF	Citations
19	A molecular atlas of cell types and zonation in the brain vasculature. Nature, 2018, 554, 475-480.	27.8	1,310
20	Vascular and Tissue Changes of Magnetic Susceptibility in the Mouse Brain After Transient Cerebral Ischemia. Translational Stroke Research, 2018, 9, 426-435.	4.2	17
21	Prion pathogenesis is unaltered in a mouse strain with a permeable blood-brain barrier. PLoS Pathogens, 2018, 14, e1007424.	4.7	9
22	Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier. Scientific Reports, 2018, 8, 17462.	3.3	19
23	Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Scientific Data, 2018, 5, 180160.	5. 3	316
24	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports, 2017, 20, 1755-1764.	6.4	100
25	Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Scientific Reports, 2016, 6, 25658.	3.3	70
26	Analysis of the brain mural cell transcriptome. Scientific Reports, 2016, 6, 35108.	3.3	185
27	Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 409-420.	2.4	106
28	Functional Characterization of Germline Mutations in PDGFB and PDGFRB in Primary Familial Brain Calcification. PLoS ONE, 2015, 10, e0143407.	2.5	77
29	The Role of the NADPH Oxidase NOX2 in Prion Pathogenesis. PLoS Pathogens, 2014, 10, e1004531.	4.7	57
30	<scp>PDGF</scp> , Pericytes and the Pathogenesis of Idiopathic Basal Ganglia Calcification (<scp>IBGC</scp>). Brain Pathology, 2014, 24, 387-395.	4.1	42
31	Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nature Genetics, 2013, 45, 1077-1082.	21.4	273
32	Breaking and building the wall: the biology of the blood-brain barrier in health and disease. Swiss Medical Weekly, 2013, 143, w13892.	1.6	21
33	Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors. Cell, 2012, 150, 194-206.	28.9	329
34	Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485, 512-516.	27.8	1,019
35	Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell, 2011, 21, 193-215.	7.0	2,123
36	Pericytes and the bloodâ€"brain barrier: recent advances and implications for the delivery of CNS therapy. Therapeutic Delivery, 2011, 2, 419-422.	2,2	34

#	Article	IF	CITATIONS
37	Getting to Know the Cast - Cellular Interactions and Signaling at the Neurovascular Unit. Current Pharmaceutical Design, 2011, 17, 2750-2754.	1.9	44
38	Pericytes regulate the blood–brain barrier. Nature, 2010, 468, 557-561.	27.8	2,214
39	Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 630-638.	2.4	784
40	A gain-of-function approach to analyze the role of PDGF-B in pericyte recruitment to microvessels. Journal of the Neurological Sciences, 2009, 283, 289.	0.6	0
41	Role of Pericytes in Vascular Biology. Frontiers in Diabetes, 2009, , 194-202.	0.4	1
42	PDGFâ€B signaling is important for murine cardiac development: Its role in developing atrioventricular valves, coronaries, and cardiac innervation. Developmental Dynamics, 2008, 237, 494-503.	1.8	78
43	Identification of a Core Set of 58 Gene Transcripts With Broad and Specific Expression in the Microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1469-1476.	2.4	95
44	Pericytes and vascular stability. Experimental Cell Research, 2006, 312, 623-629.	2.6	435
45	Endothelial/Pericyte Interactions. Circulation Research, 2005, 97, 512-523.	4.5	1,748
46	Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes and Development, 2005, 19, 462-471.	5.9	178
47	The Integrin \hat{I}^21 Subunit Transmembrane Domain Regulates Phosphatidylinositol 3-Kinase-dependent Tyrosine Phosphorylation of Crk-associated Substrate. Molecular Biology of the Cell, 2004, 15, 2558-2567.	2.1	39
48	Determination of N- and C-terminal Borders of the Transmembrane Domain of Integrin Subunits. Journal of Biological Chemistry, 2004, 279, 21200-21205.	3.4	50
49	The Cytoplasmic Tyrosines of Integrin Subunit \hat{I}^21 Are Involved in Focal Adhesion Kinase Activation. Molecular and Cellular Biology, 2000, 20, 5758-5765.	2.3	87
50	Expression of Integrin Subunit $\hat{1}^21B$ in Integrin $\hat{1}^21$ -Deficient GD25 Cells Does Not Interfere with $\hat{1}\pm V\hat{1}^23$ Functions. Experimental Cell Research, 2000, 254, 55-63.	2.6	52
51	Determination of the Border between the Transmembrane and Cytoplasmic Domains of Human Integrin Subunits. Journal of Biological Chemistry, 1999, 274, 37030-37034.	3.4	71