M C F Donkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7882378/publications.pdf

Version: 2024-02-01

79 papers

4,229 citations

430874 18 h-index 197818 49 g-index

79 all docs

79 docs citations

79 times ranked 2577 citing authors

#	Article	IF	CITATIONS
1	Erratum to "A Global Optimal Solution to the Eco-Driving Problem― , 2022, 6, 1567-1567.		0
2	Decomposition-Based Integrated Optimal Electric Powertrain Design. IEEE Transactions on Vehicular Technology, 2022, 71, 6044-6058.	6.3	1
3	Optimal Control of Active Cell Balancing: Extending the Range and Useful Lifetime of a Battery Pack. IEEE Transactions on Control Systems Technology, 2022, 30, 2759-2766.	5.2	9
4	Excitation Allocation for Generic Identifiability of Linear Dynamic Networks With Fixed Modules., 2022, 6, 2587-2592.		1
5	altimg="si4.svg"> <mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mi> and <mml:math altimg="si439.svg" display="inline" id="d1e126" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:miow><mml:mi< td=""><td>داسml:mat عند</td><td>ኪ></td></mml:mi<></mml:miow></mml:msub></mml:math></mml:mi></mml:msub>	داسml:mat عند	ኪ >
6	mathyariant="script">He/mml:mixe/mml:mrowsemml:mrowsemml:mrowse/mml:mrowse/mml:mrowse/mml:mrowse/mml:mrowse/mml:msubsed Model simplifications and their impact on computational complexity for an electrochemistry-based battery modeling toolbox. Journal of Power Sources, 2021, 488, 229427.	7.8	h> 17
7	Joint Estimation of Battery Parameters and State of Charge Using an Extended Kalman Filter: A Single-Parameter Tuning Approach. IEEE Transactions on Control Systems Technology, 2021, 29, 1087-1101.	5.2	39
8	Ageing-Aware Charging of Lithium-ion Batteries Using a Surrogate Model. , 2021, , .		1
9	Towards State-of-Charge Estimation for Battery Packs: Reducing Computational Complexity by Optimising Model Sampling Time and Update Frequency of the Extended Kalman Filter., 2021,,.		3
10	Parameter estimation of the Doyle–Fuller–Newman model for Lithium-ion batteries by parameter normalization, grouping, and sensitivity analysis. Journal of Power Sources, 2021, 499, 229901.	7.8	26
11	Cycle-to-Cycle Multipulse Fuel-Injection Control for Advanced Diesel Combustion in Changing and Disturbed Operating Points. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143, .	1.6	0
12	Ageing-Aware Charging of Lithium-ion Batteries Using an Electrochemistry-Based Model with Capacity-Loss Side Reactions. , 2020, , .		1
13	Real-Time Range Maximisation of Electric Vehicles through Active Cell Balancing using Model-Predictive Control., 2020, , .		9
14	Distributed Control of Active Cell Balancing and Low-Voltage Bus Regulation in Electric Vehicles Using Hierarchical Model-Predictive Control. IEEE Transactions on Industrial Electronics, 2020, 67, 10464-10473.	7.9	16
15	A Port-Hamiltonian Approach to Complete Vehicle Energy Management: A Battery Electric Vehicle Case Study. , 2020, , .		2
16	Towards impedanceâ€based temperature estimation for Liâ€ion battery packs. International Journal of Energy Research, 2020, 44, 2889-2908.	4.5	19
17	Robust constrained optimization for RCCI engines using nested penalized particle swarm. Control Engineering Practice, 2020, 99, 104411.	5. 5	10
18	Eco-Driving for Energy Efficient Cornering of Electric Vehicles in Urban Scenarios. IFAC-PapersOnLine, 2020, 53, 13816-13821.	0.9	8

#	Article	IF	Citations
19	Energy Optimal Coordination of Fully Autonomous Vehicles in Urban Intersections. IFAC-PapersOnLine, 2020, 53, 15090-15095.	0.9	1
20	Traffic-Aware Vehicle Energy Management Strategies via Scenario-Based Optimization. IFAC-PapersOnLine, 2020, 53, 14217-14223.	0.9	2
21	Empirical Battery Modelling for High Currents: The Effect of Nonlinear Overpotential and Inevitable Self-Heating. IFAC-PapersOnLine, 2020, 53, 12440-12445.	0.9	2
22	A Shrinking Horizon Approach to Eco-driving for Electric City Buses: Implementation and Experimental Results. IFAC-PapersOnLine, 2019, 52, 556-561.	0.9	11
23	Systematic Design of Multivariable Fuel Injection Controllers for Advanced Diesel Combustion. IEEE Transactions on Control Systems Technology, 2019, 27, 1979-1990.	5.2	11
24	Global Solutions to the Complete Vehicle Energy Management Problem via Forward-Backward Operator Splitting. , 2019, , .		3
25	On Trade-offs Between Computational Complexity and Accuracy of Electrochemistry-based Battery Models., 2019,,.		4
26	$\text{H\^{a}\^{-}\xspace}$ Optimal Sampled-data Controller Synthesis with Generalised Disturbance and Performance Channels. , 2019, , .		0
27	Range Maximisation of Electric Vehicles through Active Cell Balancing using Reachability Analysis. , 2019, , .		9
28	A Distributed Optimization Approach for Complete Vehicle Energy Management. IEEE Transactions on Control Systems Technology, 2019, 27, 964-980.	5.2	11
29	Robust cylinder pressure estimation in heavy-duty diesel engines. International Journal of Engine Research, 2018, 19, 179-188.	2.3	11
30	LMI-Based Robust Observer Design for Battery State-of-Charge Estimation. , 2018, , .		5
31	On Experiment Design for Parameter Estimation of Equivalent-Circuit Battery Models. , 2018, , .		6
32	Vehicle Energy Management with Ecodriving: A Sequential Quadratic Programming Approach with Dual Decomposition. , 2018, , .		16
33	A Global Optimal Solution to the Eco-Driving Problem. , 2018, 2, 599-604.		45
34	Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis. International Journal of Energy Research, 2018, 42, 2417-2430.	4.5	64
35	<inline-formula> <tex-math notation="LaTeX">\$mathcal{H}_{ext{2}}\$ </tex-math> </inline-formula> -Norm-Based Multi-Pulse Diesel Fuel Injection Control With Minimal Cyclic Combustion Variation. , 2018, 2, 309-314.		5
36	Optimal control for integrated emission management in diesel engines. Control Engineering Practice, 2017, 61, 206-216.	5.5	30

#	Article	IF	CITATIONS
37	A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries. Applied Energy, 2017, 208, 1285-1296. A Computationally Efficient Implementation of an Electrochemistry-Based Model for Lithium-Ion	10.1	33
38	Batteries * *This work has received financial support from the Horizon 2020 programme of the European Union under the grant †Integrated Components for Complexity Control in affordable electrified cars (3Ccar-662192)' and under the grant †Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery manage- ment (EVERLASTING-713771)' IFAC-PapersOnLine, 2017, 50,	0.9	7
39	2169-2174. Decentralised robust controller synthesis for discrete-time polytopic systems with additive uncertainty using an iterative-LMI approach., 2017,,.		1
40	Modeling and Control of a Radio-Controlled Model Racing Car. IFAC-PapersOnLine, 2017, 50, 9162-9167.	0.9	2
41	Effects of Battery Charge Acceptance and Battery Aging in Complete Vehicle Energy Management * *This work has received financial support from the Horizon 2020 programme of the European Union under the grant †Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery management' (EVERLASTING-713771), IFAC-PapersOnLine, 2017, 50, 2145-2151.	0.9	1
42	Joint State and Parameter Estimation for Discrete-Time Polytopic Linear Parameter-Varying Systems * *This work has received financial support from the H2020 programme of the European Commission under the grant 3CCar (grant no.662192). IFAC-PapersOnLine, 2017, 50, 9778-9783.	0.9	1
43	Eventâ€triggered constant reference tracking control for discreteâ€time LPV systems with application to a laboratory tank system. IET Control Theory and Applications, 2017, 11, 2680-2687.	2.1	11
44	Real-Time Distributed Economic Model Predictive Control for Complete Vehicle Energy Management. Energies, 2017, 10, 1096.	3.1	9
45	Crosstalk Interferences on Impedance Measurements in Battery Packs "This work has received financial support from the Dutch Ministry of Economic Affairs under the grant A green Deal in Energy Materials (ADEM) and from the Horizon 2020 programme of the European Union under the grant Integrated Components for Complexity Control in affordable electrified cars (3Ccar-662192)	0.9	14
46	Event-triggered control for discrete-time linear parameter-varying systems. , 2016, , .		12
47	Multi-pulse fuel injection controller design using a quadratic model. , 2016, , .		1
48	A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries. Applied Energy, 2016, 175, 128-140.	10.1	68
49	An Improved Impedance-Based Temperature Estimation Method for Li-ion Batteriesa^—â^—This work has received financial support from the H2020 programme of the European Commission under the grant 3CCar and from Dutch Ministry of Economic A_airs under the grant ADEM (A green Deal in Energy) Tj ETQq1 1 C).784314	rgB <mark>18</mark> Overloc
50	Receding Horizon Control for Distributed Energy Management of a Hybrid Heavy-Duty Vehicle with Auxiliaries. IFAC-PapersOnLine, 2015, 48, 203-208.	0.9	10
51	Complete Vehicle Energy Management with large horizon optimization. , 2015, , .		3
52	An Equivalent Consumption Minimisation Strategy based on 1-Step Look-Ahead Stochastic Dynamic Programmingâ^—â^—This work has received financial support from the FP7 of the European Commission under the grant CONVENIENT (312314) IFAC-PapersOnLine, 2015, 48, 72-77.	0.9	6
53	Game-Theoretic Approach for Complete Vehicle Energy Management. , 2014, , .		13
54	A dual decomposition approach to complete energy management for a heavy-duty vehicle., 2014,,.		7

#	Article	lF	Citations
55	Self-triggered linear quadratic control. Automatica, 2014, 50, 1279-1287.	5.0	138
56	Minimum attention control for linear systems. Discrete Event Dynamic Systems: Theory and Applications, 2014, 24, 199-218.	1.5	33
57	Output-Based Controller Synthesis for Networked Control Systems with Periodic Protocols and Time-Varying Transmission Intervals and Delays. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6478-6483.	0.4	4
58	Dynamic Programming for Integrated Emission Management in Diesel Engines. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11860-11865.	0.4	6
59	Optimal Control of Diesel Engines with Waste Heat Recovery System. Lecture Notes in Control and Information Sciences, 2014, , 237-253.	1.0	4
60	Model-based periodic event-triggered control for linear systems. Automatica, 2013, 49, 698-711.	5.0	510
61	Stability analysis of networked and quantized linear control systems. Nonlinear Analysis: Hybrid Systems, 2013, 10, 111-125.	3.5	36
62	Periodic Event-Triggered Control for Linear Systems. IEEE Transactions on Automatic Control, 2013, 58, 847-861.	5.7	1,046
63	Decentralized observer-based control via networked communication. Automatica, 2013, 49, 2074-2086.	5.0	64
64	Decentralized static output-feedback control via networked communication. , 2012, , .		6
65	Stability analysis of networked control systems with periodic protocols and uniform quantizers. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 186-191.	0.4	3
66	Networked Control Systems Toolbox: Robust Stability Analysis Made Easy. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 55-60.	0.4	8
67	Output-Based Event-Triggered Control With Guaranteed \${cal L}_{infty}\$-Gain and Improved and Decentralized Event-Triggering. IEEE Transactions on Automatic Control, 2012, 57, 1362-1376.	5 . 7	737
68	Stability analysis of stochastic networked control systems. Automatica, 2012, 48, 917-925.	5.0	196
69	Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. IEEE Transactions on Automatic Control, 2011, 56, 2101-2115.	5.7	458
70	Iterative learning control for uncertain systems: Noncausal finite time interval robust control design. International Journal of Robust and Nonlinear Control, 2011, 21, 1645-1666.	3.7	27
71	Periodic event-triggered control based on state feedback. , 2011, , .		63
72	On the minimum attention control problem for linear systems: A linear programming approach. , 2011, , .		15

#	Article	IF	CITATION
73	A Model Predictive Control Approach for Stochastic Networked Control Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 7-12.	0.4	4
74	Output-based event-triggered control with Guaranteed & amp; #x2112; & lt; inf & gt; & amp; #x221E; & lt; / inf & gt; -gain and improved event-triggering., 2010,,.		75
75	Iterative Learning Control for uncertain systems: Robust monotonic convergence analysis. Automatica, 2009, 45, 2383-2391.	5.0	99
76	Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. Lecture Notes in Computer Science, 2009, , 150-164.	1.3	41
77	A design approach for noncausal robust Iterative Learning Control using worst case disturbance optimisation. , 2008, , .		5
78	Robustness against model uncertainties of norm optimal iterative learning control. , 2008, , .		27
79	Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines. SAE International Journal of Engines, 0, 8, 1029-1040.	0.4	5