Phillip A Sharp

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7882197/phillip-a-sharp-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 37,038 97 74 h-index g-index citations papers 106 42,586 28.7 7.44 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
97	RNA in formation and regulation of transcriptional condensates. <i>Rna</i> , 2021 ,	5.8	5
96	RNA-Mediated Feedback Control of Transcriptional Condensates. <i>Cell</i> , 2021 , 184, 207-225.e24	56.2	99
95	Partitioning of cancer therapeutics in nuclear condensates. <i>Science</i> , 2020 , 368, 1386-1392	33.3	120
94	MicroRNAs organize intrinsic variation into stem cell states. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6942-6950	11.5	10
93	Imprinted Maternally Expressed microRNAs Antagonize Paternally Driven Gene Programs in Neurons. <i>Molecular Cell</i> , 2020 , 78, 85-95.e8	17.6	14
92	Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. <i>Nature Medicine</i> , 2019 , 25, 583	3- <u>5</u> 80 5	38
91	PolIII phosphorylation regulates a switch between transcriptional and splicing condensates. <i>Nature</i> , 2019 , 572, 543-548	50.4	255
90	Enhancer Features that Drive Formation of Transcriptional Condensates. <i>Molecular Cell</i> , 2019 , 75, 549-5	561 76 7	155
89	Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A. <i>Rna</i> , 2019 , 25, 1291-1297	5.8	12
88	Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. <i>Science Advances</i> , 2018 , 4, eaao5508	14.3	37
87	Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. <i>Nature Genetics</i> , 2018 , 50, 657-661	36.3	14
86	Transcriptional Pause Sites Delineate Stable Nucleosome-Associated Premature Polyadenylation Suppressed by U1 snRNP. <i>Molecular Cell</i> , 2018 , 69, 648-663.e7	17.6	65
85	CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. <i>Nature</i> , 2018 , 564, 141-145	5 50.4	100
84	Evolution of weak cooperative interactions for biological specificity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E11053-E11060	11.5	21
83	Coactivator condensation at super-enhancers links phase separation and gene control. <i>Science</i> , 2018 , 361,	33.3	951
82	Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow. <i>ELife</i> , 2018 , 7,	8.9	14
81	Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. <i>Cell</i> , 2017 , 168, 1000-1014.e15	56.2	167

(2014-2017)

80	Dicer loss and recovery induce an oncogenic switch driven by transcriptional activation of the oncofetal Imp1-3 family. <i>Genes and Development</i> , 2017 , 31, 674-687	12.6	11
79	A Phase Separation Model for Transcriptional Control. <i>Cell</i> , 2017 , 169, 13-23	56.2	856
78	Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. <i>Cancer Cell</i> , 2017 , 32, 411-426.e11	24.3	99
77	Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer Immunotherapy. <i>Cell</i> , 2017 , 171, 113	88 : 1.15	0& <u>1</u> 5
76	AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. <i>Nature Neuroscience</i> , 2017 , 20, 1329-1341	25.5	119
75	Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. <i>Cell</i> , 2016 , 166, 1147-1162.e15	56.2	159
74	GENE EXPRESSION. Single-cell variability guided by microRNAs. <i>Science</i> , 2016 , 352, 1390-1	33.3	14
73	Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements. <i>Cell Reports</i> , 2016 , 14, 310-9	10.6	71
72	Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. <i>Cell</i> , 2015 , 160, 1246-6	5 0 56.2	544
71	In vivo genome editing using Staphylococcus aureus Cas9. <i>Nature</i> , 2015 , 520, 186-91	50.4	1700
71 70	In vivo genome editing using Staphylococcus aureus Cas9. <i>Nature</i> , 2015 , 520, 186-91 Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81	50.4	1700 267
			267
70	Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81 Detained introns are a novel, widespread class of post-transcriptionally spliced introns. <i>Genes and</i>	33.3	267
7° 69	Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81 Detained introns are a novel, widespread class of post-transcriptionally spliced introns. <i>Genes and Development</i> , 2015 , 29, 63-80 Rbfox2 controls autoregulation in RNA-binding protein networks. <i>Genes and Development</i> , 2014 ,	33.3	267
7° 69 68	Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81 Detained introns are a novel, widespread class of post-transcriptionally spliced introns. <i>Genes and Development</i> , 2015 , 29, 63-80 Rbfox2 controls autoregulation in RNA-binding protein networks. <i>Genes and Development</i> , 2014 , 28, 637-51 Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. <i>Nature Biotechnology</i> ,	33·3 12.6 12.6	267 228 82
7° 69 68	Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81 Detained introns are a novel, widespread class of post-transcriptionally spliced introns. <i>Genes and Development</i> , 2015 , 29, 63-80 Rbfox2 controls autoregulation in RNA-binding protein networks. <i>Genes and Development</i> , 2014 , 28, 637-51 Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. <i>Nature Biotechnology</i> , 2014 , 32, 670-6	33·3 12.6 12.6	267 228 82 666
7° 69 68 67 66	Transcription factor trapping by RNA in gene regulatory elements. <i>Science</i> , 2015 , 350, 978-81 Detained introns are a novel, widespread class of post-transcriptionally spliced introns. <i>Genes and Development</i> , 2015 , 29, 63-80 Rbfox2 controls autoregulation in RNA-binding protein networks. <i>Genes and Development</i> , 2014 , 28, 637-51 Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. <i>Nature Biotechnology</i> , 2014 , 32, 670-6 Global microRNA depletion suppresses tumor angiogenesis. <i>Genes and Development</i> , 2014 , 28, 1054-67 Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA	33-3 12.6 12.6 44-5	267 228 82 666

62	CRISPR-mediated direct mutation of cancer genes in the mouse liver. <i>Nature</i> , 2014 , 514, 380-4	50.4	521
61	CRISPR-Cas9 knockin mice for genome editing and cancer modeling. <i>Cell</i> , 2014 , 159, 440-55	56.2	1089
60	RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. <i>Molecular Cell</i> , 2014 , 54, 887-900	17.6	251
59	LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. <i>Molecular Cell</i> , 2014 , 54, 777-90	17.6	319
58	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. <i>Nature Biotechnology</i> , 2014 , 32, 551-3	44.5	694
57	Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. <i>Cell</i> , 2014 , 156, 920-34	56.2	83
56	Divergent transcription: a driving force for new gene origination?. <i>Cell</i> , 2013 , 155, 990-6	56.2	118
55	Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2876-81	11.5	345
54	The role of miRNAs in regulating gene expression networks. <i>Journal of Molecular Biology</i> , 2013 , 425, 3582-600	6.5	277
53	Promoter directionality is controlled by U1 snRNP and polyadenylation signals. <i>Nature</i> , 2013 , 499, 360-3	B 50.4	294
52	Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. <i>Genes and Development</i> , 2013 , 27, 941-54	12.6	34
51	In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. <i>Rna</i> , 2012 , 18, 1116-22	5.8	88
50	Roles for microRNAs in conferring robustness to biological processes. <i>Cell</i> , 2012 , 149, 515-24	56.2	1162
49	MicroRNAs can generate thresholds in target gene expression. <i>Nature Genetics</i> , 2011 , 43, 854-9	36.3	484
48	MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. <i>Blood</i> , 2011 , 118, 916-25	2.2	125
47	Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. <i>Nature Structural and Molecular Biology</i> , 2011 , 18, 237-44	17.6	202
46	Research agenda. Promoting convergence in biomedical science. <i>Science</i> , 2011 , 333, 527	33.3	87
45	Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10460-5	11.5	141

(2003-2011)

44	Genome-wide impact of a recently expanded microRNA cluster in mouse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 15804-9	11.5	42
43	Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 141	63-85	120
42	A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. <i>PLoS Genetics</i> , 2011 , 7, e1002054	6	83
41	Histone H3K27ac separates active from poised enhancers and predicts developmental state. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 21931-6	11.5	2453
40	c-Myc regulates transcriptional pause release. <i>Cell</i> , 2010 , 141, 432-45	56.2	930
39	MicroRNA sponges: progress and possibilities. <i>Rna</i> , 2010 , 16, 2043-50	5.8	512
38	Emerging roles for natural microRNA sponges. <i>Current Biology</i> , 2010 , 20, R858-61	6.3	379
37	The centrality of RNA. <i>Cell</i> , 2009 , 136, 577-80	56.2	322
36	Divergent transcription: a new feature of active promoters. <i>Cell Cycle</i> , 2009 , 8, 2557-64	4.7	140
35	Divergent transcription from active promoters. <i>Science</i> , 2008 , 322, 1849-51	33.3	695
34	Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. <i>Cell</i> , 2008 , 132, 875-86	56.2	1332
33	Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. <i>Cell</i> , 2008 , 134, 521-33	56.2	1228
32	MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. <i>Nature Methods</i> , 2007 , 4, 721-6	21.6	1619
31	RNA sequence analysis defines Dicer u role in mouse embryonic stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 18097-102	11.5	261
30	Characterization of a highly variable eutherian microRNA gene. <i>Rna</i> , 2005 , 11, 1245-57	5.8	117
29	Single nucleotide polymorphism-based validation of exonic splicing enhancers. <i>PLoS Biology</i> , 2004 , 2, E268	9.7	158
28	Specificity of microRNA target selection in translational repression. <i>Genes and Development</i> , 2004 , 18, 504-11	12.6	1249
27	siRNAs can function as miRNAs. <i>Genes and Development</i> , 2003 , 17, 438-42	12.6	935

26	Embryonic stem cell-specific MicroRNAs. Developmental Cell, 2003, 5, 351-8	10.2	938
25	Lentivirus-delivered stable gene silencing by RNAi in primary cells. <i>Rna</i> , 2003 , 9, 493-501	5.8	920
24	A ribozyme selected from variants of U6 snRNA promotes 2Ļ5 Ubranch formation. <i>Rna</i> , 2001 , 7, 29-43	5.8	16
23	The SRm160/300 splicing coactivator subunits. <i>Rna</i> , 2000 , 6, 111-20	5.8	76
22	A novel 50-kilodalton fragment of host cell factor 1 (C1) in G(0) cells. <i>Molecular and Cellular Biology</i> , 2000 , 20, 3568-75	4.8	7
21	RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. <i>Cell</i> , 2000 , 101, 25-33	56.2	2137
20	View of life sciences in the 21st century. <i>Journal of Dermatological Science</i> , 2000 , 24 Suppl 1, S1-14	4.3	
19	PUF60: a novel U2AF65-related splicing activity. <i>Rna</i> , 1999 , 5, 1548-60	5.8	101
18	Evolutionary fates and origins of U12-type introns. <i>Molecular Cell</i> , 1998 , 2, 773-85	17.6	213
17	Split Genes and RNA Splicing (Nobel Lecture). <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1229-1240		12
16	DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. <i>Cell</i> , 1993 , 73, 533-40	56.2	343
15	Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. <i>Nature</i> , 1993 , 365, 364-8	50.4	213
14	Five intermediate complexes in transcription initiation by RNA polymerase II. <i>Cell</i> , 1989 , 56, 549-61	56.2	987
13	Regulation by HIV Rev depends upon recognition of splice sites. <i>Cell</i> , 1989 , 59, 789-95	56.2	498
12	A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. <i>Nature</i> , 1986 , 319, 154-8	50.4	1167
11	A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. <i>Nature</i> , 1986 , 323, 640-3	50.4	728
10	Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. <i>Nature</i> , 1985 , 313, 552-7	50.4	213
9	Cofactor requirements of splicing of purified messenger RNA precursors. <i>Nature</i> , 1984 , 308, 375-7	50.4	84

LIST OF PUBLICATIONS

8	Regulation of heat shock protein 70 gene expression by c-myc. <i>Nature</i> , 1984 , 312, 280-2	50.4	260
7	Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes. <i>Nature</i> , 1983 , 301, 471-2	50.4	202
6	Inhibition of adenovirus early region IV transcription in vitro by a purified viral DNA binding protein. <i>Nature</i> , 1983 , 302, 545-7	50.4	71
5	The sequences of an expressed rat alpha-tubulin gene and a pseudogene with an inserted repetitive element. <i>Nature</i> , 1982 , 300, 330-5	50.4	278
4	A gene chimaera of SV40 and mouse beta-globin is transcribed and properly spliced. <i>Nature</i> , 1981 , 289, 378-82	50.4	89
3	Spliced segments at the 5therminus of adenovirus 2 late mRNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1977 , 74, 3171-5	11.5	942
2	Enhancer features that drive formation of transcriptional condensates		1
1	CDK13 Mutations Drive Melanoma via Accumulation of Prematurely Terminated Transcripts		1