
Kevin C Kemp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7882179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced expression of mitochondrial fumarate hydratase in progressive multiple sclerosis contributes to impaired in vitro mesenchymal stromal cell-mediated neuroprotection. Multiple Sclerosis Journal, 2022, 28, 1179-1188.	3.0	3
2	Abnormal scaffold attachment factor 1 expression and localization in spinocerebellar ataxias and Huntington's chorea. Brain Pathology, 2020, 30, 1041-1055.	4.1	3
3	shRNAâ€mediated PPARα knockdown in human glioma stem cells reduces <i>in vitro</i> proliferation and inhibits orthotopic xenograft tumour growth. Journal of Pathology, 2019, 247, 422-434.	4.5	13
4	Bone marrow transplantation stimulates neural repair in Friedreich's ataxia mice. Annals of Neurology, 2018, 83, 779-793.	5.3	14
5	Aberrant cerebellar Purkinje cell function repaired in vivo by fusion with infiltrating bone marrow-derived cells. Acta Neuropathologica, 2018, 135, 907-921.	7.7	16
6	Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro. Multiple Sclerosis Journal, 2018, 24, 919-931.	3.0	35
7	Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 2018, 20, 21-28.	0.7	27
8	Dysregulation of Mesenchymal Stromal Cell Antioxidant Responses in Progressive Multiple Sclerosis. Stem Cells Translational Medicine, 2018, 7, 748-758.	3.3	27
9	Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells. Cerebellum, 2017, 16, 840-851.	2.5	8
10	Cytokine therapyâ€mediated neuroprotection in a Friedreich's ataxia mouse model. Annals of Neurology, 2017, 81, 212-226.	5.3	26
11	Purkinje cell injury, structural plasticity and fusion in patients with Friedreich's ataxia. Acta Neuropathologica Communications, 2016, 4, 53.	5.2	36
12	Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Research, 2016, 1642, 452-460.	2.2	19
13	Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomarkers in Medicine, 2016, 10, 889-902.	1.4	49
14	Purkinje Cell Pathology and Loss in Multiple Sclerosis Cerebellum. Brain Pathology, 2015, 25, 692-700.	4.1	39
15	Reductions in kinesin expression are associated with nitric oxideâ€induced axonal damage. Journal of Neuroscience Research, 2015, 93, 882-892.	2.9	23
16	The Use of Mesenchymal Stem Cells for Treating Neurodegenerative Diseases. Stem Cells and Cancer Stem Cells, 2015, , 3-20.	0.1	2
17	Analyzing Cell Fusion Events Within the Central Nervous System Using Bone Marrow Chimerism. Methods in Molecular Biology, 2015, 1313, 165-184.	0.9	1
18	Increased microglial catalase activity in multiple sclerosis grey matter. Brain Research, 2014, 1559, 55-64.	2.2	18

Kevin C Kemp

#	Article	IF	CITATIONS
19	Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathologica, 2014, 128, 629-638.	7.7	37
20	Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet, The, 2013, 382, 1204-1213.	13.7	54
21	Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 153-161.	3.0	26
22	Changes in Expression of the Antioxidant Enzyme SOD3 Occur Upon Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells In Vitro. Stem Cells and Development, 2012, 21, 2026-2035.	2.1	32
23	Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain, 2012, 135, 2962-2972.	7.6	38
24	Human Mesenchymal Stem Cells Increase Anti-oxidant Defences in Cells Derived from Patients with Friedreich's Ataxia. Cerebellum, 2012, 11, 861-871.	2.5	22
25	Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Research, 2012, 1431, 86-96.	2.2	50
26	Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Annals of Hematology, 2011, 90, 777-789.	1.8	34
27	Neurofilament dot blot assays: Novel means of assessing axon viability in culture. Journal of Neuroscience Methods, 2011, 198, 195-203.	2.5	12
28	Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment. Autoimmune Diseases, 2011, 2011, 1-11.	0.6	80
29	Mesenchymal Stem Cells Restore Frataxin Expression and Increase Hydrogen Peroxide Scavenging Enzymes in Friedreich Ataxia Fibroblasts. PLoS ONE, 2011, 6, e26098.	2.5	24
30	Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Annals of Hematology, 2010, 89, 701-713.	1.8	54
31	Inflammatory Cytokine Induced Regulation of Superoxide Dismutase 3 Expression by Human Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2010, 6, 548-559.	5.6	74
32	Mesenchymal stem cellâ€secreted superoxide dismutase promotes cerebellar neuronal survival. Journal of Neurochemistry, 2010, 114, 1569-1580.	3.9	107
33	Stem cells in genetic myelin disorders. Regenerative Medicine, 2010, 5, 425-439.	1.7	8
34	Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 909-918.	3.0	62
35	Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Research, 2009, 3, 63-70.	0.7	253
36	Bone marrow-derived mesenchymal stem cells. Leukemia and Lymphoma, 2005, 46, 1531-1544.	1.3	151