Carson C Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7881606/publications.pdf

Version: 2024-02-01

36 papers 9,322 citations

471509 17 h-index 414414 32 g-index

47 all docs

47 docs citations

47 times ranked

21758 citing authors

#	Article	IF	CITATIONS
1	Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4, 7.	6.4	8,062
2	A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 2002, 12, 39-53.	1.0	306
3	Role of mutual inhibition in binocular rivalry. Journal of Neurophysiology, 2011, 106, 2136-2150.	1.8	101
4	Phase-locking in weakly heterogeneous neuronal networks. Physica D: Nonlinear Phenomena, 1998, 118, 343-370.	2.8	83
5	A Computational Model for Cerebral Cortical Dysfunction in Autism Spectrum Disorders. Biological Psychiatry, 2010, 67, 672-678.	1.3	80
6	Path Integral Methods for Stochastic Differential Equations. Journal of Mathematical Neuroscience, 2015, 5, 8.	2.4	71
7	Competitive Dynamics in Cortical Responses to Visual Stimuli. Journal of Neurophysiology, 2005, 94, 3388-3396.	1.8	60
8	A theoretical framework for gene induction and experimental comparisons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7107-7112.	7.1	53
9	Dynamic Finite Size Effects in Spiking Neural Networks. PLoS Computational Biology, 2013, 9, e1002872.	3.2	50
10	The accuracy of LD Score regression as an estimator of confounding and genetic correlations in genomeâ€wide association studies. Genetic Epidemiology, 2018, 42, 783-795.	1.3	45
11	Learning recurrent dynamics in spiking networks. ELife, 2018, 7, .	6.0	41
12	Dissecting transcriptional amplification by MYC. ELife, 2020, 9, .	6.0	41
13	Uncovering the Genetic Architectures of Quantitative Traits. Computational and Structural Biotechnology Journal, 2016, 14, 28-34.	4.1	39
14	Applying compressed sensing to genome-wide association studies. GigaScience, 2014, 3, 10.	6.4	30
15	Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory. PLoS Computational Biology, 2016, 12, e1004903.	3.2	24
16	PA1 Protein, a New Competitive Decelerator Acting at More than One Step to Impede Glucocorticoid Receptor-mediated Transactivation. Journal of Biological Chemistry, 2013, 288, 42-58.	3.4	23
17	Inferring Mechanisms from Dose–Response Curves. Methods in Enzymology, 2011, 487, 465-483.	1.0	22
18	Deducing the Temporal Order of Cofactor Function in Ligand-Regulated Gene Transcription: Theory and Experimental Verification. PLoS ONE, 2012, 7, e30225.	2.5	18

#	Article	IF	CITATIONS
19	A Conserved Protein Motif Is Required for Full Modulatory Activity of Negative Elongation Factor Subunits NELF-A and NELF-B in Modifying Glucocorticoid Receptor-regulated Gene Induction Properties. Journal of Biological Chemistry, 2013, 288, 34055-34072.	3.4	18
20	Identification of Location and Kinetically Defined Mechanism of Cofactors and Reporter Genes in the Cascade of Steroid-regulated Transactivation. Journal of Biological Chemistry, 2012, 287, 40982-40995.	3.4	17
21	A Kinase-Independent Activity of Cdk9 Modulates Glucocorticoid Receptor-Mediated Gene Induction. Biochemistry, 2014, 53, 1753-1767.	2.5	12
22	An Approach to Greater Specificity for Glucocorticoids. Frontiers in Endocrinology, 2018, 9, 76.	3.5	10
23	Dynamical modeling of multi-scale variability in neuronal competition. Communications Biology, 2019, 2, 319.	4.4	10
24	Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model. Frontiers in Immunology, 2021, 12, 754127.	4.8	10
25	Research Resource: Modulators of Glucocorticoid Receptor Activity Identified by a New High-Throughput Screening Assay. Molecular Endocrinology, 2014, 28, 1194-1206.	3.7	9
26	Kinetically-Defined Component Actions in Gene Repression. PLoS Computational Biology, 2015, 11, e1004122.	3.2	8
27	Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila. ELife, 2021, 10, .	6.0	6
28	Kinetically Defined Mechanisms and Positions of Action of Two New Modulators of Glucocorticoid Receptor-regulated Gene Induction. Journal of Biological Chemistry, 2016, 291, 342-354.	3.4	5
29	Training Spiking Neural Networks in the Strong Coupling Regime. Neural Computation, 2021, 33, 1199-1233.	2.2	5
30	A mathematical model for persistent post-CSD vasoconstriction. PLoS Computational Biology, 2020, 16, e1007996.	3.2	4
31	Theory of partial agonist activity of steroid hormones. AIMS Molecular Science, 2015, 2, 101-123.	0.5	3
32	Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster. Physica A: Statistical Mechanics and Its Applications, 2022, 598, 127318.	2.6	2
33	A mathematical model for persistent post-CSD vasoconstriction. , 2020, 16, e1007996.		0
34	A mathematical model for persistent post-CSD vasoconstriction. , 2020, 16, e1007996.		0
35	A mathematical model for persistent post-CSD vasoconstriction. , 2020, 16, e1007996.		0
36	A mathematical model for persistent post-CSD vasoconstriction. , 2020, 16, e1007996.		0