List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7881582/publications.pdf Version: 2024-02-01



7HAO-PINC LU

| #  | Article                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016,<br>102, 187-196.                               | 3.8  | 1,665     |
| 2  | A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002, 50, 3501-3512.                                                 | 3.8  | 1,162     |
| 3  | Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 2014, 62, 105-113. | 3.8  | 1,036     |
| 4  | Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546-550.                                      | 13.7 | 988       |
| 5  | Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544, 460-464.                                           | 13.7 | 843       |
| 6  | Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia,<br>2016, 116, 332-342.                             | 3.8  | 670       |
| 7  | Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia,<br>2013, 68, 526-529.                             | 2.6  | 650       |
| 8  | Structural Amorphous Steels. Physical Review Letters, 2004, 92, 245503.                                                                                | 2.9  | 534       |
| 9  | Glass Formation Criterion for Various Glass-Forming Systems. Physical Review Letters, 2003, 91, 115505.                                                | 2.9  | 459       |
| 10 | Bulk Metallic Glass Composites with Transformationâ€Mediated Workâ€Hardening and Ductility.<br>Advanced Materials, 2010, 22, 2770-2773.                | 11.1 | 431       |
| 11 | Phaseâ€Transformation Ductilization of Brittle Highâ€Entropy Alloys via Metastability Engineering.<br>Advanced Materials, 2017, 29, 1701678.           | 11.1 | 421       |
| 12 | An assessment on the future development of high-entropy alloys: Summary from a recent workshop.<br>Intermetallics, 2015, 66, 67-76.                    | 1.8  | 355       |
| 13 | Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels. Science, 2007, 316, 433-436.                                                               | 6.0  | 337       |
| 14 | Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60, 1-8.                  | 1.8  | 326       |
| 15 | Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Progress in<br>Materials Science, 2019, 103, 235-318.       | 16.0 | 321       |
| 16 | Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics, 2018, 93, 269-273.                                                   | 1.8  | 312       |
| 17 | Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta<br>Materialia, 2011, 59, 2928-2936.                        | 3.8  | 290       |
| 18 | Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics, 2014, 55, 9-14.                                       | 1.8  | 284       |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Guidelines in predicting phase formation of high-entropy alloys. MRS Communications, 2014, 4, 57-62.                                                                                                                                                              | 0.8 | 275       |
| 20 | Role of yttrium in glass formation of Fe-based bulk metallic glasses. Applied Physics Letters, 2003, 83, 2581-2583.                                                                                                                                               | 1,5 | 263       |
| 21 | Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Materialia, 2013, 61, 2993-3001.                                                                                                                                           | 3.8 | 263       |
| 22 | The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Materialia, 2000, 42, 667-673.                                                                                                           | 2.6 | 260       |
| 23 | Role of minor alloying additions in formation of bulk metallic glasses: A Review. Journal of Materials<br>Science, 2004, 39, 3965-3974.                                                                                                                           | 1.7 | 257       |
| 24 | Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. Jom, 2013, 65, 1848-1858.                                                                                                                    | 0.9 | 250       |
| 25 | Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys.<br>Intermetallics, 2016, 79, 41-52.                                                                                                                                 | 1.8 | 225       |
| 26 | Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy<br>processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 676, 294-303. | 2.6 | 225       |
| 27 | Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4<br>high-entropy alloy. Acta Materialia, 2018, 147, 184-194.                                                                                                 | 3.8 | 215       |
| 28 | Additive manufacturing of metals: Microstructure evolution and multistage control. Journal of Materials Science and Technology, 2022, 100, 224-236.                                                                                                               | 5.6 | 215       |
| 29 | Short-range ordering and its effects on mechanical properties of high-entropy alloys. Journal of Materials Science and Technology, 2021, 62, 214-220.                                                                                                             | 5.6 | 201       |
| 30 | Polymorphism in a high-entropy alloy. Nature Communications, 2017, 8, 15687.                                                                                                                                                                                      | 5.8 | 192       |
| 31 | Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 2000, 270, 103-114.                                                                                                               | 1.5 | 190       |
| 32 | Theoretical Strength and the Onset of Plasticity in Bulk Metallic Glasses Investigated by Nanoindentation with a Spherical Indenter. Physical Review Letters, 2004, 93, 125504.                                                                                   | 2.9 | 184       |
| 33 | Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Materialia, 2017, 125, 481-489.                                                                                                                                                             | 3.8 | 169       |
| 34 | Metallic Liquids and Glasses: Atomic Order and Global Packing. Physical Review Letters, 2010, 105, 155501.                                                                                                                                                        | 2.9 | 157       |
| 35 | Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6, eaax4002.                                                                                                                                                     | 4.7 | 157       |
| 36 | Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Materialia, 2016, 109, 314-322.                                                                                                               | 3.8 | 156       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007, 101, 086108.                                                                                                                            | 1.1  | 142       |
| 38 | Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38,<br>2737-2746.                      | 1.1  | 139       |
| 39 | Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel<br>angular pressing. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2017, 705, 411-419. | 2.6  | 137       |
| 40 | The development of alumina-forming austenitic stainless steels for high-temperature structural use.<br>Jom, 2008, 60, 12-18.                                                                                                                | 0.9  | 136       |
| 41 | Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Materials<br>Research Letters, 2019, 7, 225-231.                                                                                                       | 4.1  | 131       |
| 42 | Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics, 2008, 16, 453-462.                                                                            | 1.8  | 130       |
| 43 | <i>In-situ</i> neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Applied Physics Letters, 2014, 104, .                                                                                             | 1.5  | 128       |
| 44 | Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions.<br>Scientific Reports, 2016, 6, 34213.                                                                                                    | 1.6  | 109       |
| 45 | A new approach to understanding and measuring glass formation in bulk amorphous materials.<br>Intermetallics, 2004, 12, 1035-1043.                                                                                                          | 1.8  | 108       |
| 46 | Effect of residual stresses on the hardness of bulk metallic glasses. Acta Materialia, 2011, 59, 2858-2864.                                                                                                                                 | 3.8  | 105       |
| 47 | Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 2005, 13, 415-418.                                                                                                                          | 1.8  | 104       |
| 48 | Elastic Moduli Inheritance and the Weakest Link in Bulk Metallic Glasses. Physical Review Letters, 2012, 108, 085501.                                                                                                                       | 2.9  | 103       |
| 49 | Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Journal of Materials Research, 2015, 30, 2804-2815.                                                 | 1.2  | 101       |
| 50 | Shock compression response of high entropy alloys. Materials Research Letters, 2016, 4, 226-232.                                                                                                                                            | 4.1  | 100       |
| 51 | Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature, 2021, 590, 262-267.                                                                                                                                    | 13.7 | 98        |
| 52 | Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Materials<br>Today, 2021, 46, 28-34.                                                                                                              | 8.3  | 98        |
| 53 | Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics, 2011, 19, 1502-1508.                                                                                 | 1.8  | 96        |
| 54 | Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Materialia, 2017, 124, 478-488.                                                                                          | 3.8  | 93        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 2007, 15, 618-624.                                                                                                                 | 1.8  | 91        |
| 56 | Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 2016, 6, 52164-52170.                                                                                                                     | 1.7  | 91        |
| 57 | Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2017, 685, 342-348. | 2.6  | 91        |
| 58 | Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. Journal of Alloys and Compounds, 2019, 792, 444-455.                                                       | 2.8  | 90        |
| 59 | IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cmâ^'2 in acidic media. Nature Communications, 2021, 12, 3540.                                                                              | 5.8  | 89        |
| 60 | Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. Journal of Materials Science and Technology, 2018, 34, 355-364.      | 5.6  | 87        |
| 61 | Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. Journal of Alloys and Compounds, 2019, 792, 1028-1035.                                                                                                 | 2.8  | 87        |
| 62 | Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy. Science<br>Bulletin, 2018, 63, 362-368.                                                                                                      | 4.3  | 86        |
| 63 | Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy. Physical Review Letters, 2012, 109, 245506.                                                                                                         | 2.9  | 85        |
| 64 | Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Materials Letters, 2011, 65, 3285-3288.                                                                         | 1.3  | 82        |
| 65 | High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses.<br>Journal of Applied Physics, 2016, 119, .                                                                                   | 1.1  | 82        |
| 66 | Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 2017, 5, 187-194.                                                                                                                         | 4.1  | 81        |
| 67 | Identify the best glass forming ability criterion. Intermetallics, 2010, 18, 883-888.                                                                                                                                             | 1.8  | 80        |
| 68 | Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy.<br>Scripta Materialia, 2017, 130, 64-68.                                                                                      | 2.6  | 80        |
| 69 | Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation.<br>Advanced Materials, 2019, 31, e1904989.                                                                                      | 11.1 | 80        |
| 70 | Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon. Intermetallics, 2019, 106, 77-87.                                                                            | 1.8  | 77        |
| 71 | Glass-forming tendency of bulk La–Al–Ni–Cu–(Co) metallic glass-forming liquids. Journal of Applied<br>Physics, 2003, 93, 286-290.                                                                                                 | 1.1  | 76        |
| 72 | Superplasticity and superplastic forming ability of a Zr–Ti–Ni–Cu–Be bulk metallic glass in the supercooled liquid region. Journal of Non-Crystalline Solids, 2005, 351, 209-217.                                                 | 1.5  | 75        |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Materialia, 2020, 175, 1-6.                                                                                             | 2.6  | 75        |
| 74 | Development of advanced materials via entropy engineering. Scripta Materialia, 2019, 165, 164-169.                                                                                                                                                                  | 2.6  | 74        |
| 75 | Atomistic mechanism for nanocrystallization of metallic glasses. Acta Materialia, 2008, 56, 2760-2769.                                                                                                                                                              | 3.8  | 73        |
| 76 | Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering.<br>Materials Today, 2022, 54, 83-89.                                                                                                                                  | 8.3  | 72        |
| 77 | Glass formation in La-based La–Al–Ni–Cu–(Co) alloys by Bridgman solidification and their glass<br>forming ability. Acta Materialia, 1999, 47, 2215-2224.                                                                                                            | 3.8  | 71        |
| 78 | High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017,<br>686, 34-40.                                                  | 2.6  | 69        |
| 79 | Improving plasticity of the Zr 46 Cu 46 Al 8 bulk metallic glass via thermal rejuvenation. Science<br>Bulletin, 2018, 63, 840-844.                                                                                                                                  | 4.3  | 69        |
| 80 | Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy. International Journal of<br>Hydrogen Energy, 2020, 45, 5367-5374.                                                                                                                        | 3.8  | 67        |
| 81 | Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability.<br>Physical Review B, 2009, 80, .                                                                                                                                | 1.1  | 65        |
| 82 | A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys. Materials Research Letters, 2019, 7, 340-346.                                                                                                     | 4.1  | 65        |
| 83 | Precipitate characteristics and their effects on the high-temperature creep resistance of<br>alumina-forming austenitic stainless steels. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2015, 622, 91-100. | 2.6  | 63        |
| 84 | Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Largeâ€Sized<br>and Ductile Metallic Glass Composites. Advanced Materials, 2016, 28, 8156-8161.                                                                             | 11.1 | 63        |
| 85 | Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. Electrochimica Acta, 2019, 299, 470-478.                                                                                                             | 2.6  | 63        |
| 86 | Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy.<br>Journal of Alloys and Compounds, 2019, 781, 613-620.                                                                                                            | 2.8  | 62        |
| 87 | Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature. Scripta Materialia, 2020, 188, 21-25.                                                                                                          | 2.6  | 62        |
| 88 | Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A<br>nanomechanical analysis. Acta Materialia, 2017, 140, 443-451.                                                                                                               | 3.8  | 61        |
| 89 | The Phase Competition and Stability of High-Entropy Alloys. Jom, 2014, 66, 1973-1983.                                                                                                                                                                               | 0.9  | 60        |
| 90 | Strong work-hardening behavior in a Ti-based bulk metallic glass composite. Scripta Materialia, 2013, 69, 73-76.                                                                                                                                                    | 2.6  | 59        |

6

| #   | Article                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corrosion Science, 2014, 84, 159-164.                                                                                                                                                                   | 3.0 | 58        |
| 92  | Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Computational<br>Materials Science, 2014, 85, 147-153.                                                                                                                                                                 | 1.4 | 58        |
| 93  | New intrinsic mechanism on gum-like superelasticity of multifunctional alloys. Scientific Reports, 2013, 3, 2156.                                                                                                                                                                                           | 1.6 | 57        |
| 94  | Ordered clusters and free volume in a Zr–Ni metallic glass. Applied Physics Letters, 2008, 93, .                                                                                                                                                                                                            | 1.5 | 56        |
| 95  | Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming<br>austenitic stainless steels subjecting to long-term high-temperature exposure. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 295-307. | 2.6 | 56        |
| 96  | Snoek-type damping performance in strong and ductile high-entropy alloys. Science Advances, 2020, 6, eaba7802.                                                                                                                                                                                              | 4.7 | 56        |
| 97  | Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses. Journal of Non-Crystalline Solids, 2004, 341, 93-100.                                                                                                                           | 1.5 | 53        |
| 98  | Formation mechanism and characterization of nanoporous silver with tunable porosity and<br>promising capacitive performance by chemical dealloying of glassy precursor. Acta Materialia, 2016,<br>105, 367-377.                                                                                             | 3.8 | 52        |
| 99  | Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 483-488.                                                                                                    | 3.3 | 52        |
| 100 | Binary eutectic clusters and glass formation in ideal glass-forming liquids. Applied Physics Letters, 2006, 89, 071910.                                                                                                                                                                                     | 1.5 | 51        |
| 101 | Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Applied<br>Physics Letters, 2009, 95, .                                                                                                                                                                     | 1.5 | 51        |
| 102 | Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing. Nature<br>Communications, 2021, 12, 6582.                                                                                                                                                                    | 5.8 | 51        |
| 103 | Effects of nanocrystal formation on the soft magnetic properties of Fe-based bulk metallic glasses.<br>Applied Physics Letters, 2011, 99, .                                                                                                                                                                 | 1.5 | 50        |
| 104 | Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity. Journal of<br>Materials Science and Technology, 2014, 30, 566-575.                                                                                                                                                       | 5.6 | 49        |
| 105 | Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass. International Journal of Plasticity, 2015, 71, 136-145.                                                                                                                               | 4.1 | 49        |
| 106 | Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses.<br>Acta Materialia, 2018, 149, 108-118.                                                                                                                                                              | 3.8 | 49        |
| 107 | Stacking Fault Driven Phase Transformation in CrCoNi Medium Entropy Alloy. Nano Letters, 2021, 21, 1419-1426.                                                                                                                                                                                               | 4.5 | 47        |
| 108 | Separation of glass transition and crystallization in metallic glasses by temperature-modulated differential scanning calorimetry. Philosophical Magazine Letters, 1998, 78, 213-220.                                                                                                                       | 0.5 | 46        |

| #   | Article                                                                                                                                                                                                                         | IF          | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 109 | Nearest-neighbor coordination and chemical ordering in multicomponent bulk metallic glasses.<br>Applied Physics Letters, 2007, 90, 211908.                                                                                      | 1.5         | 46        |
| 110 | Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2014, 594, 246-252. | 2.6         | 46        |
| 111 | Effects of scandium additions on mechanical properties of cellular Al-based foams. Intermetallics, 2012, 28, 71-76.                                                                                                             | 1.8         | 45        |
| 112 | Reentrant glass transition leading to ultrastable metallic glass. Materials Today, 2020, 34, 66-77.                                                                                                                             | 8.3         | 45        |
| 113 | Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters, 2008, 92, .                                                                                                                   | 1.5         | 44        |
| 114 | Atomic packing symmetry in the metallic liquid and glass states. Acta Materialia, 2011, 59, 6480-6488.                                                                                                                          | 3.8         | 44        |
| 115 | Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Science China Technological Sciences, 2018, 61, 179-183.                                                          | 2.0         | 44        |
| 116 | Activation energy for plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A high temperature nanoindentation study. Scripta Materialia, 2018, 156, 129-133.                                                          | 2.6         | 44        |
| 117 | Unusual relation between glass-forming ability and thermal stability of high-entropy bulk metallic<br>glasses. Materials Research Letters, 2018, 6, 495-500.                                                                    | 4.1         | 42        |
| 118 | Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses. Npj Computational Materials, 2020, 6, .                                                                  | 3.5         | 42        |
| 119 | Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy.<br>Corrosion Science, 2012, 65, 317-321.                                                                                      | 3.0         | 40        |
| 120 | Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics, 2013, 42, 68-76.                                                                              | 1.8         | 40        |
| 121 | A general and transferable deep learning framework for predicting phase formation in materials. Npj<br>Computational Materials, 2021, 7, .                                                                                      | 3.5         | 40        |
| 122 | Bulk Glass Formation in an Fe-Based Fe–Y–Zr–M (M = Cr, Co, Al)–Mo–B System. Journal of Materials<br>Research, 2004, 19, 921-929.                                                                                                | 1.2         | 39        |
| 123 | Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures. Intermetallics, 2005, 13, 642-648.                                                                            | 1.8         | 38        |
| 124 | Glass formation and magnetic properties of Fe–C–Si–B–P–(Cr–Al–Co) bulk metallic glasses fabric<br>using industrial raw materials. Journal of Magnetism and Magnetic Materials, 2009, 321, 2833-2837.                            | ated<br>I.0 | 38        |
| 125 | Effects of metalloid elements on the glass-forming ability of Fe-based alloys. Journal of Alloys and Compounds, 2009, 467, 187-190.                                                                                             | 2.8         | 38        |
| 126 | Nano-graining a particle-strengthened high-entropy alloy. Scripta Materialia, 2019, 163, 24-28.                                                                                                                                 | 2.6         | 38        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Specimen Size Effects on Zr-Based Bulk Metallic Glasses Investigated by Uniaxial Compression and<br>Spherical Nanoindentation. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2010, 41, 1735-1742. | 1.1 | 37        |
| 128 | Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses.<br>Acta Materialia, 2010, 58, 2564-2576.                                                                                             | 3.8 | 37        |
| 129 | Nonlinear tensile deformation behavior of small-sized metallic glasses. Scripta Materialia, 2009, 61, 564-567.                                                                                                                                | 2.6 | 36        |
| 130 | Interpreting size effects of bulk metallic glasses based on a size-independent critical energy density.<br>Intermetallics, 2010, 18, 157-160.                                                                                                 | 1.8 | 36        |
| 131 | Compositional gradient films constructed by sputtering in a multicomponent Ti–Al–(Cr, Fe, Ni) system.<br>Journal of Materials Research, 2018, 33, 3330-3338.                                                                                  | 1.2 | 36        |
| 132 | Effects of cooling rates on the mechanical properties of a Ti-based bulk metallic glass. Science China:<br>Physics, Mechanics and Astronomy, 2010, 53, 394-398.                                                                               | 2.0 | 35        |
| 133 | Hot corrosion behaviour and its mechanism of a new alumina-forming austenitic stainless steel in molten sodium sulphate. Corrosion Science, 2013, 77, 202-209.                                                                                | 3.0 | 35        |
| 134 | Development of electrochemical supercapacitors with uniform nanoporous silver network.<br>Electrochimica Acta, 2015, 182, 224-229.                                                                                                            | 2.6 | 35        |
| 135 | Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering. Scripta<br>Materialia, 2018, 146, 340-343.                                                                                                             | 2.6 | 35        |
| 136 | Superconducting Ti15Zr15Nb35Ta35 High-Entropy Alloy With Intermediate Electron-Phonon Coupling.<br>Frontiers in Materials, 2018, 5, .                                                                                                         | 1.2 | 35        |
| 137 | Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous<br>Fe-C-Si-B-P-Mo alloys. Science China: Physics, Mechanics and Astronomy, 2010, 53, 430-434.                                                  | 2.0 | 34        |
| 138 | Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels. Acta Materialia, 2021, 213, 116984.                                                                                                                      | 3.8 | 34        |
| 139 | Synthesis of bulk glassy Fe–C–Si–B–P–Ga alloys with high glass-forming ability and good soft-magnetic properties. Intermetallics, 2010, 18, 1821-1825.                                                                                        | 1.8 | 33        |
| 140 | Onset of yielding and shear band nucleation in an Au-based bulk metallic glass. Scripta Materialia, 2011,<br>65, 759-762.                                                                                                                     | 2.6 | 33        |
| 141 | Critical cooling rate and thermal stability of Fe–Co–Zr–Y–Cr–Mo–B amorphous alloy. Journal of<br>Alloys and Compounds, 2006, 407, 125-128.                                                                                                    | 2.8 | 31        |
| 142 | Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content. Scientific Reports, 2013, 3, 1983.                                                                                                  | 1.6 | 31        |
| 143 | <i>In-situ</i> study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities. Applied Physics Letters, 2014, 105,                                                                            | 1.5 | 31        |
| 144 | Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scripta Materialia, 2017, 135, 24-28.                                                                                                                          | 2.6 | 31        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | High-performance hybrid electrode decorated by well-aligned nanograss arrays for glucose sensing.<br>Biosensors and Bioelectronics, 2018, 102, 288-295.                                                                       | 5.3  | 31        |
| 146 | Superior radiation tolerance via reversible disordering–ordering transition of coherent superlattices. Nature Materials, 2023, 22, 442-449.                                                                                   | 13.3 | 31        |
| 147 | Compressive fracture characteristics of a Zr-based bulk metallic glass at high test temperatures.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2005, 398, 82-87. | 2.6  | 30        |
| 148 | Size effects on the compressive deformation behaviour of a brittle Fe-based bulk metallic glass.<br>Philosophical Magazine Letters, 2010, 90, 403-412.                                                                        | 0.5  | 30        |
| 149 | Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass. Computational<br>Materials Science, 2018, 141, 59-67.                                                                                      | 1.4  | 30        |
| 150 | Glass-forming ability and thermal stability of a new bulk metallic glass in the quaternary<br>Zr–Cu–Ni–Al system. Journal of Non-Crystalline Solids, 2005, 351, 2519-2523.                                                    | 1.5  | 29        |
| 151 | Competitive formation of glasses and glass–matrix composites. Intermetallics, 2007, 15, 253-259.                                                                                                                              | 1.8  | 29        |
| 152 | A novel Ho36Dy20Al24Co20 bulk metallic glass with large magnetocaloric effect. Solid State Communications, 2008, 146, 49-52.                                                                                                  | 0.9  | 29        |
| 153 | High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic<br>transformations in multifunctional Ti–24Nb–4Zr–8Sn alloy. Acta Materialia, 2014, 81, 476-486.                           | 3.8  | 29        |
| 154 | Effect of Decomposition Kinetics of Titanium Hydride on the Al Alloy Melt Foaming Process. Journal of<br>Materials Science and Technology, 2015, 31, 361-368.                                                                 | 5.6  | 29        |
| 155 | Bendable nanoporous copper thin films with tunable thickness and pore features. Corrosion Science, 2016, 104, 227-235.                                                                                                        | 3.0  | 29        |
| 156 | Thermodynamics of La based La–Al–Cu–Ni–Co alloys studied by temperature modulated DSC.<br>Intermetallics, 2000, 8, 477-480.                                                                                                   | 1.8  | 27        |
| 157 | Roles of Manganese in the High-temperature Oxidation Resistance of Alumina-forming Austenitic<br>Steels at above 800°C. Oxidation of Metals, 2012, 78, 349-362.                                                               | 1.0  | 27        |
| 158 | Flexible glassy grid structure for rapid degradation of azo dye. Materials and Design, 2018, 155, 346-351.                                                                                                                    | 3.3  | 27        |
| 159 | High-entropy carbide-nitrides with enhanced toughness and sinterability. Science China Materials, 2021, 64, 2037-2044.                                                                                                        | 3.5  | 27        |
| 160 | Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys.<br>Physical Review B, 2021, 103, .                                                                                              | 1.1  | 27        |
| 161 | Glass Forming Ability of La-rich La-Al-Cu Ternary Alloys. Materials Transactions, 2001, 42, 551-555.                                                                                                                          | 0.4  | 26        |
| 162 | Micro-alloying Effects of Yttrium on Recrystallization Behavior of an Alumina-forming Austenitic<br>Stainless Steel. Journal of Iron and Steel Research International, 2016, 23, 553-558.                                     | 1.4  | 26        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Enhancement of glass-forming ability and plasticity via alloying the elements having positive heat of mixing with Cu in Cu48Zr48Al4 bulk metallic glass. Journal of Alloys and Compounds, 2019, 777, 382-391.                                     | 2.8 | 26        |
| 164 | Ti–Zr–Be ternary bulk metallic glasses correlated with binary eutectic clusters. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527,<br>6248-6250.                                  | 2.6 | 25        |
| 165 | Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass.<br>Intermetallics, 2018, 99, 44-50.                                                                                                               | 1.8 | 25        |
| 166 | Ordered nitrogen complexes overcoming strength–ductility trade-off in an additively manufactured high-entropy alloy. Virtual and Physical Prototyping, 2020, 15, 532-542.                                                                         | 5.3 | 25        |
| 167 | Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures. Journal of Materials Science and Technology, 2022, 122, 243-254.                                                                     | 5.6 | 25        |
| 168 | Designing novel bulk metallic glass composites with a high aluminum content. Scientific Reports, 2013, 3, 3353.                                                                                                                                   | 1.6 | 24        |
| 169 | Effects of calcium on mechanical properties of cellular Al–Cu foams. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 471-478.                                                   | 2.6 | 24        |
| 170 | Effect of residual stresses on the onset of yielding in a Zr-based metallic glass. Acta Materialia, 2011, 59, 7627-7633.                                                                                                                          | 3.8 | 23        |
| 171 | Inherent structure length in metallic glasses: simplicity behind complexity. Scientific Reports, 2015, 5, 12137.                                                                                                                                  | 1.6 | 23        |
| 172 | Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr<br>high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2021, 805, 140798. | 2.6 | 23        |
| 173 | Glass transition and crystallization of Mg–Ni–Nd metallic glasses studied by temperature-modulated DSC. Intermetallics, 2004, 12, 869-874.                                                                                                        | 1.8 | 22        |
| 174 | Self-supported NiCoP/nanoporous copper as highly active electrodes for hydrogen evolution reaction. Scripta Materialia, 2019, 173, 51-55.                                                                                                         | 2.6 | 22        |
| 175 | Design of Hierarchical Porosity Via Manipulating Chemical and Microstructural Complexities in<br>Highâ€Entropy Alloys for Efficient Water Electrolysis. Advanced Science, 2022, 9, e2105808.                                                      | 5.6 | 22        |
| 176 | Estimation of the glass forming ability of the Fe-based bulk metallic glass<br>Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 that contains non-metallic inclusions. Metals and Materials<br>International, 2009, 15, 7-14.                               | 1.8 | 21        |
| 177 | Relationship between composite structures and compressive properties in CuZr-based bulk metallic glass system. Science Bulletin, 2011, 56, 3960-3964.                                                                                             | 1.7 | 21        |
| 178 | Plasticity improvement in a bulk metallic glass composed of an open-cell Cu foam as the skeleton.<br>Composites Science and Technology, 2013, 75, 49-54.                                                                                          | 3.8 | 21        |
| 179 | Fe-based bulk metallic glass composites without any metalloid elements. Acta Materialia, 2013, 61, 3214-3223.                                                                                                                                     | 3.8 | 21        |
| 180 | Synthesis of well-aligned CuO nanowire array integrated with nanoporous CuO network for oxidative degradation of methylene blue. Corrosion Science, 2017, 126, 37-43.                                                                             | 3.0 | 21        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Formation mechanism and characterization of immiscible nanoporous binary Cu–Ag alloys with<br>excellent surface-enhanced Raman scattering performance by chemical dealloying of glassy<br>precursors. Inorganic Chemistry Frontiers, 2020, 7, 1127-1139.      | 3.0 | 20        |
| 182 | Enhancing dynamic mechanical properties of bulk metallic glass composites via deformation-induced martensitic transformation. Scripta Materialia, 2020, 186, 346-351.                                                                                         | 2.6 | 20        |
| 183 | Ni–Gd–Al metallic glasses with large magnetocaloric effect. Intermetallics, 2010, 18, 1132-1136.                                                                                                                                                              | 1.8 | 19        |
| 184 | Effects of non-hydrostaticity and grain size on the pressure-induced phase transition of the CoCrFeMnNi high-entropy alloy. Journal of Applied Physics, 2018, 124, .                                                                                          | 1.1 | 19        |
| 185 | Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction. Journal of Materials Science and Technology, 2021, 73, 145-150.                                                       | 5.6 | 19        |
| 186 | Formation, Crystallization Behavior, and Soft Magnetic Properties of FeCSiBP Bulk Metallic Glass<br>Fabricated Using Industrial Raw Materials. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2012, 43, 2615-2619. | 1.1 | 18        |
| 187 | Nano-network mediated high strength and large plasticity in an Al-based alloy. Materials Letters, 2012, 84, 59-62.                                                                                                                                            | 1.3 | 18        |
| 188 | Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2020, 812, 152028.                                                                                                    | 2.8 | 18        |
| 189 | Nanoscale phase separation of TiZrNbTa high entropy alloy induced by hydrogen absorption. Scripta<br>Materialia, 2020, 178, 503-507.                                                                                                                          | 2.6 | 17        |
| 190 | Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 679-682.                                                       | 2.6 | 16        |
| 191 | Role of rare-earth elements in glass formation of Al–Ca–Ni amorphous alloys. Journal of Alloys and<br>Compounds, 2012, 513, 387-392.                                                                                                                          | 2.8 | 16        |
| 192 | Alloying effects on mechanical properties of the Cu–Zr–Al bulk metallic glass composites.<br>Computational Materials Science, 2013, 79, 187-192.                                                                                                              | 1.4 | 16        |
| 193 | Polyamorphic transition in a transition metal based metallic glass under high pressure. Physical<br>Review B, 2019, 99, .                                                                                                                                     | 1.1 | 15        |
| 194 | Cellular structure and energy absorption of Al Cu alloy foams fabricated via a two-step foaming method. Materials and Design, 2020, 196, 109090.                                                                                                              | 3.3 | 15        |
| 195 | Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys. Journal of<br>Alloys and Compounds, 2021, 859, 158291.                                                                                                             | 2.8 | 15        |
| 196 | Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics. Materials Horizons, 2022, 9, 804-814.                                                                                                           | 6.4 | 15        |
| 197 | Composition effects on glass-forming ability and its indicator Î <sup>3</sup> . Intermetallics, 2008, 16, 410-417.                                                                                                                                            | 1.8 | 14        |
| 198 | Nanocrystallization in a Cu-doped Fe-based metallic glass. Journal of Alloys and Compounds, 2016, 688, 822-827.                                                                                                                                               | 2.8 | 14        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Effects of Nitrogen on the Glass Formation and Mechanical Properties of a Ti-Based Metallic Glass.<br>Acta Metallurgica Sinica (English Letters), 2016, 29, 173-180.                                                                                          | 1.5 | 14        |
| 200 | Compositional and microstructural optimization and mechanical-property enhancement of cast Ti<br>alloys based on Ti-6Al-4V alloy. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2017, 704, 91-101.   | 2.6 | 14        |
| 201 | Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids. Journal of Materials Science and Technology, 2019, 35, 44-47.                                                                                                    | 5.6 | 14        |
| 202 | Simultaneously enhancing the strength and plasticity of Ti-based bulk metallic glass composites via microalloying with Ta. Materials Research Letters, 2020, 8, 23-30.                                                                                        | 4.1 | 14        |
| 203 | Melting and solidification of Pb nanoparticles embedded in an Al matrix as studied by<br>temperature-modulated differential scanning calorimetry. Philosophical Magazine Letters, 1998, 78,<br>37-44.                                                         | 0.5 | 13        |
| 204 | Propensity of bond exchange as a window into the mechanical properties of metallic glasses. Applied Physics Letters, 2015, 106, .                                                                                                                             | 1.5 | 13        |
| 205 | Mold-Filling Ability of Aluminum Alloy Melt during the Two-Step Foaming Process. Journal of<br>Materials Science and Technology, 2016, 32, 509-514.                                                                                                           | 5.6 | 13        |
| 206 | A strategy to design eutectic high-entropy alloys based on binary eutectics. Journal of Materials<br>Science and Technology, 2022, 103, 152-156.                                                                                                              | 5.6 | 13        |
| 207 | Easy glass formation in La55Ni2OAl25 by Bridgman solidification. Materials Letters, 1998, 34, 318-321.                                                                                                                                                        | 1.3 | 12        |
| 208 | A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses. Journal of Applied Physics, 2009, 106, 083512.                                                                                                | 1.1 | 12        |
| 209 | Continuously manufacturing of bulk metallic glass-coated wire composite. Intermetallics, 2010, 18, 2034-2038.                                                                                                                                                 | 1.8 | 12        |
| 210 | Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics, 2018, 101, 133-143.                                                                                                         | 1.8 | 12        |
| 211 | Magnetocaloric effect in Er-Al-Co bulk metallic glasses. Science Bulletin, 2011, 56, 3978-3983.                                                                                                                                                               | 1.7 | 11        |
| 212 | Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Materials<br>Research Letters, 2017, 5, 300-305.                                                                                                                     | 4.1 | 11        |
| 213 | The Effects of Metalloid Elements on the Nanocrystallization Behavior and Soft Magnetic Properties of FeCBSiPCu Amorphous Alloys. Metals, 2018, 8, 283.                                                                                                       | 1.0 | 11        |
| 214 | Effects of Al and Ti Additions on Irradiation Behavior of FeMnNiCr Multi-Principal-Element Alloy. Jom, 2020, 72, 150-159.                                                                                                                                     | 0.9 | 11        |
| 215 | Effects of Ni and Al on precipitation behavior and mechanical properties of precipitation-hardened<br>CoCrFeNi high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2022, 839, 142879. | 2.6 | 11        |
| 216 | Direct observation of a concealed glass transition in a Mg–Ni–Nd metallic glass. Applied Physics<br>Letters, 2003, 82, 862-864.                                                                                                                               | 1.5 | 10        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | In-situ visualizing atomic structural evolution during crystallization in ternary Zr Cu Al bulk<br>metallic glasses. Intermetallics, 2019, 105, 173-178.                                                                                      | 1.8 | 10        |
| 218 | Effects of stacking fault energy on the deformation behavior of CoNiCrFeMn high-entropy alloys: A molecular dynamics study. Applied Physics Letters, 2021, 119, .                                                                             | 1.5 | 10        |
| 219 | Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data. Applied Physics Letters, 2021, 119, .                                                                              | 1.5 | 10        |
| 220 | Evolution of atomic ordering in metallic glasses. Intermetallics, 2010, 18, 2333-2337.                                                                                                                                                        | 1.8 | 9         |
| 221 | Mechanical heterogeneity and its relation with glass-forming ability in Zr-Cu and Zr-Cu-Al metallic glasses. Intermetallics, 2017, 90, 159-163.                                                                                               | 1.8 | 9         |
| 222 | Work-hardenable Zr-based bulk metallic glass composites reinforced with ex-situ TiNi fibers. Journal of Alloys and Compounds, 2019, 806, 1497-1508.                                                                                           | 2.8 | 9         |
| 223 | Elucidating the nature of crystallization kinetics in Zr46Cu46Al8 metallic glass through simultaneous WAXS/SAXS measurements. Applied Physics Letters, 2019, 114, .                                                                           | 1.5 | 9         |
| 224 | Study of glass transition of metallic glasses by temperature-modulated differential scanning calorimetry (MDSC). Thermochimica Acta, 2000, 357-358, 65-69.                                                                                    | 1.2 | 8         |
| 225 | An electronic criterion for assessing intrinsic brittleness of metallic glasses. Journal of Chemical Physics, 2014, 141, 024503.                                                                                                              | 1.2 | 8         |
| 226 | Ion Irradiation-Enhanced Raman Scattering on Nanoporous Copper. Langmuir, 2018, 34, 13041-13046.                                                                                                                                              | 1.6 | 8         |
| 227 | Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip. Journal of Materials Science and Technology, 2023, 134, 1-10.                                                              | 5.6 | 8         |
| 228 | A Scheme to Design Multi-Component Bulk Metallic Glasses in <i>Ideal</i> Glass-Forming<br>Liquids. Materials Transactions, 2007, 48, 2476-2482.                                                                                               | 0.4 | 7         |
| 229 | In-situ neutron scattering study of crystallization in a Zr-based bulk metallic glass. Applied Physics A:<br>Materials Science and Processing, 2010, 99, 537-542.                                                                             | 1.1 | 7         |
| 230 | Effects of Cooling Rates on Glass Formation and Magnetic Behavior for the<br>Fe73.0C7.0Si3.3B5.0P8.7Mo3.0 Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2013, 44, 2004-2009. | 1.1 | 7         |
| 231 | Enhanced Corrosion Resistance of an Alumina-forming Austenitic Steel Against Molten Al. Oxidation of Metals, 2020, 94, 465-475.                                                                                                               | 1.0 | 7         |
| 232 | Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper. Nanotechnology, 2018, 29, 184001.                                                                                                | 1.3 | 6         |
| 233 | Local structural mechanism for frozen-in dynamics in metallic glasses. Physical Review B, 2018, 97, .                                                                                                                                         | 1.1 | 6         |
| 234 | Effects of Al addition on atomic structure of Cu-Zr metallic glass. Journal of Applied Physics, 2018, 123, .                                                                                                                                  | 1.1 | 6         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses. Scripta Materialia, 2019, 161, 62-65.                                                                                    | 2.6 | 6         |
| 236 | New insight into fabrication of shaped Mg–X alloy foams with cellular structure via a gas release<br>reaction powder metallurgy route. Journal of Iron and Steel Research International, 2021, 28, 125-132.                          | 1.4 | 6         |
| 237 | Minor additions of Sn in a bulk glass-forming Fe-based system. Journal of Materials Research, 2006, 21, 3180-3186.                                                                                                                   | 1.2 | 5         |
| 238 | Alloying effects of iridium on glass formation and glass-forming ability of the Zr–Cu–Al system.<br>Journal of Materials Research, 2009, 24, 1619-1623.                                                                              | 1.2 | 5         |
| 239 | The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids. Scientific Reports, 2018, 8, 2025.                                                                                             | 1.6 | 5         |
| 240 | Evaluation Of Glass-Forming Ability. , 2008, , 87-115.                                                                                                                                                                               |     | 5         |
| 241 | Corrosion and irradiation behavior of Fe-based amorphous coating in lead-bismuth eutectic liquids.<br>Science China Technological Sciences, 2022, 65, 440-449.                                                                       | 2.0 | 5         |
| 242 | Combustion behavior and mechanism of Cu46Zr46Al8 bulk metallic glass in oxygen-enriched environments. Corrosion Science, 2022, 204, 110415.                                                                                          | 3.0 | 5         |
| 243 | Alloying effects of the elements with a positive heat of mixing on the glass forming ability of Al-La-Ni<br>amorphous alloys. Science China: Physics, Mechanics and Astronomy, 2014, 57, 122-127.                                    | 2.0 | 4         |
| 244 | Eight in one: high-entropy-alloy nanoparticles synthesized by carbothermal shock. Science Bulletin, 2018, 63, 737-738.                                                                                                               | 4.3 | 4         |
| 245 | Unravel unusual hardening behavior of a Pd–Ni–P metallic glass in its supercooled liquid region.<br>Applied Physics Letters, 2021, 118, .                                                                                            | 1.5 | 4         |
| 246 | Research progress on high-entropy bulk metallic glasses. Scientia Sinica: Physica, Mechanica Et<br>Astronomica, 2020, 50, 067003.                                                                                                    | 0.2 | 4         |
| 247 | Glass formation in La-based La55Al25(NiCu)20 alloys by Bridgman solidification. Journal of<br>Non-Crystalline Solids, 1999, 250-252, 601-604.                                                                                        | 1.5 | 3         |
| 248 | Glass transition of rare-earth based metallic glasses: temperature modulated differential scanning calorimetry. Journal of Non-Crystalline Solids, 1999, 250-252, 689-693.                                                           | 1.5 | 3         |
| 249 | Coating thickness control in continuously fabricating metallic glass-coated composite wires.<br>International Journal of Minerals, Metallurgy and Materials, 2013, 20, 456-461.                                                      | 2.4 | 3         |
| 250 | Observation of distinct atomic relaxation process in a phase-separated metallic glass-forming melt.<br>Europhysics Letters, 2014, 108, 46001.                                                                                        | 0.7 | 3         |
| 251 | Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses. Journal of Materials Science and Technology, 2020, 42, 203-211.                           | 5.6 | 3         |
| 252 | Comments on "Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability<br>under air atmosphere―[H. Men and D.H. Kim, J. Mater. Res. 18, 1502 (2003)]. Journal of Materials<br>Research, 2004, 19, 427-428. | 1.2 | 2         |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Easy Class Formation in La- and Pd-Based Alloys by Bridgman Solidification. Materials Science Forum, 1999, 312-314, 247-252.                                                                                                                    | 0.3 | 1         |
| 254 | A new many-body potential with the second-moment approximation of tight-binding scheme for<br>Hafnium. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2071-2080.                                                                    | 2.0 | 1         |
| 255 | Effects of density difference of constituent elements on glass formation in TiCu-based bulk metallic glasses. Progress in Natural Science: Materials International, 2013, 23, 469-474.                                                          | 1.8 | 1         |
| 256 | Suppression of crystallization in a Ca-based bulk metallic glass by compression. Journal of Alloys and Compounds, 2018, 765, 595-600.                                                                                                           | 2.8 | 1         |
| 257 | Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 807-813. | 2.4 | 1         |
| 258 | Significant Undercooled Liquid Region of Over 200K in Rare Earth Based Metallic Glasses. Materials<br>Research Society Symposia Proceedings, 1998, 554, 205.                                                                                    | 0.1 | 0         |
| 259 | Glass Formation and Glass Forming Ability of<br>La <sub>86-x</sub> Al <sub>14</sub> Cu <sub>x</sub> (x=10-36) Alloys.<br>Materials Science Forum, 2001, 360-362, 7-12.                                                                          | 0.3 | 0         |
| 260 | On The Class Forming Ability Criteria Of Bulk Metallic Glasses. Materials Research Society Symposia<br>Proceedings, 2002, 754, 1.                                                                                                               | 0.1 | 0         |
| 261 | Ultra-strong magnesium alloy with novel nanostructures. Science China Technological Sciences, 2017, 60, 1769-1770.                                                                                                                              | 2.0 | 0         |
| 262 | Magnetic structure of ternary rare-earth alloy Ho1/3Tb1/3Er1/3. Journal of Magnetism and Magnetic Materials, 2019, 469, 315-322.                                                                                                                | 1.0 | 0         |
| 263 | Reply to comments on "Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al<br>bulk metallic glasses. Acta Materialia, 149, 108 (2018)†Scrinta Materialia, 2019, 163, 168-169.                                        | 2.6 | 0         |