Graham A. McCulloch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7881052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies. Molecular Ecology, 2009, 18, 4073-4087.	2.0	70
2	A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Molecular Phylogenetics and Evolution, 2016, 96, 150-160.	1.2	66
3	Flight of <i>Rhyzopertha dominica</i> (Coleoptera: Bostrichidae)—a Spatio-Temporal Analysis With Pheromone Trapping and Population Genetics. Journal of Economic Entomology, 2016, 109, 2561-2571.	0.8	65
4	Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends in Ecology and Evolution, 2020, 35, 512-522.	4.2	55
5	ONSET OF GLACIATION DROVE SIMULTANEOUS VICARIANT ISOLATION OF ALPINE INSECTS IN NEW ZEALAND. Evolution; International Journal of Organic Evolution, 2010, 64, 2033-43.	1.1	49
6	Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal. Journal of Biogeography, 2007, 34, 678-687.	1.4	46
7	Does wing size shape insect biogeography? Evidence from a diverse regional stonefly assemblage. Global Ecology and Biogeography, 2017, 26, 93-101.	2.7	42
8	Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular Ecology, 2019, 28, 3141-3150.	2.0	27
9	Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Molecular Ecology, 2021, 30, 4162-4172.	2.0	26
10	Does wing reduction influence the relationship between altitude and insect body size? A case study using New Zealand's diverse stonefly fauna. Ecology and Evolution, 2018, 8, 953-960.	0.8	24
11	Divergence among generalist herbivores: the Frankliniella schultzei species complex in Australia (Thysanoptera: Thripidae). Arthropod-Plant Interactions, 2017, 11, 875-887.	0.5	20
12	Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. EvoDevo, 2019, 10, 21.	1.3	18
13	Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Systematic Biology, 2021, 70, 863-876.	2.7	18
14	Progression of phosphine resistance in susceptible <i>Tribolium castaneum</i> (Herbst) populations under different immigration regimes and selection pressures. Evolutionary Applications, 2017, 10, 907-918.	1.5	17
15	Polyandry, genetic diversity and fecundity of emigrating beetles: understanding new foci of infestation and selection. Journal of Pest Science, 2018, 91, 287-298.	1.9	17
16	Phylogenetic divergence of island biotas: Molecular dates, extinction, and "relict―lineages. Molecular Ecology, 2019, 28, 4354-4362.	2.0	16
17	Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography, 2019, 42, 811-813.	2.1	15
18	Contrasting patterns of phylogeographic structuring in two key beetle pests of stored grain in India and Australia. Journal of Pest Science, 2019, 92, 1249-1259.	1.9	14

GRAHAM A. MCCULLOCH

#	Article	IF	CITATIONS
19	Testing for seasonality in alpine streams: How does altitude affect freshwater insect life cycles?. Freshwater Biology, 2018, 63, 483-491.	1.2	13
20	Biological evidence constraining river drainage evolution across a subduction-transcurrent plate boundary transition, New Zealand. Geomorphology, 2019, 336, 119-132.	1.1	13
21	Phylogenomics resolves the invasion history of Acacia auriculiformis in Florida. Journal of Biogeography, 2021, 48, 453-464.	1.4	12
22	Anthropogenic evolution in an insect wing polymorphism following widespread deforestation. Biology Letters, 2021, 17, 20210069.	1.0	12
23	Genetic diversity and morphological variation in African boxthorn (Lycium ferocissimum) – Characterising the target weed for biological control. Biological Control, 2020, 143, 104206.	1.4	11
24	Development of microsatellite markers and a preliminary assessment of population structuring in the rice weevil, Sitophilus oryzae (L.). Journal of Stored Products Research, 2016, 66, 12-17.	1.2	10
25	Assessment of genetic structuring in the Lygodium fern moths Austromusotima camptozonale and Neomusotima conspurcatalis in their native range: implications for biological control. Biological Control, 2018, 121, 8-13.	1.4	10
26	Genetic diversity and its geographic structure in Sitophilus oryzae (Coleoptera; Curculionidae) across India – implications for managing phosphine resistance. Journal of Stored Products Research, 2019, 84, 101512.	1.2	10
27	Native range surveys for host-specific Acacia auriculiformis biocontrol agents – A role for DNA barcoding. Biological Control, 2021, 158, 104594.	1.4	10
28	A prospective and iterative approach to finding safe weed biological control agents – testing ecological and evolutionary hypotheses with molecular evidence. Biological Control, 2022, 169, 104887.	1.4	10
29	Molecular screening of herbivorous flies collected from Hydrilla verticillata across China and Korea – setting up hypotheses for further exploratory surveys and tests. Biological Control, 2019, 138, 104051.	1.4	7
30	The population genetic structure of the urchin Centrostephanus rodgersii in New ZealandÂwith links to Australia. Marine Biology, 2021, 168, 1.	0.7	6
31	Genomic signatures of parallel alpine adaptation in recentlyâ€evolved flightless insects. Molecular Ecology, 2021, 30, 6677-6686.	2.0	6
32	Evidence for aposematism in a southern hemisphere stonefly family (Plecoptera: Austroperlidae). Austral Entomology, 2021, 60, 267-275.	0.8	5
33	<i>Zelandoperla maungatuaensis</i> sp. n. (Plecoptera: Gripopterygidae), a new flightless stonefly species from Otago, New Zealand. New Zealand Journal of Zoology, 2020, 47, 141-147.	0.6	4
34	Phylogenetic placement and the timing of diversification in Australia's endemic Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) species. Australian Systematic Botany, 2020, 33, 103.	0.3	4
35	The Gene Introgression Approach and the Potential Cost of Genes that Confer Strong Phosphine Resistance in Red Flour Beetle (Coleoptera: Tenebrionidae). Journal of Economic Entomology, 2020, 113, 1547-1554.	0.8	4
36	Phylogeography of the rare Australian endemic Grey Falcon <i>Falco hypoleucos</i> : implications for conservation. Bird Conservation International, 2020, 30, 447-455.	0.7	4

#	Article	IF	CITATIONS
37	Scrutinizing biological control survey data from the native range – the phylogeny and Lygodium fern host associations of Musotiminae moths. Biological Control, 2019, 134, 123-129.	1.4	3
38	Significant population genetic structuring in Rhyzopertha dominica across Turkey: Biogeographic and practical implications. Journal of Stored Products Research, 2020, 85, 101536.	1.2	3
39	Coping with heat in the arid interior – what can feather structure reveal about the ecology of Australia's desert-living Grey Falcon Falco hypoleucos?. Emu, 2020, 120, 83-89.	0.2	3
40	Genetic identity of Australian prickly acacia (Vachellia nilotica, Fabales: Mimosoideae) – Assessing the target for biological control. Biological Control, 2021, 155, 104540.	1.4	3
41	Does assortative mating contribute to reproductive isolation among sympatric ecotypes of the wingâ€dimorphic stonefly <i>Zelandoperla fenestrata</i> (Plecoptera: Gripopterygidae)?. Austral Entomology, 2021, 60, 571-577.	0.8	3
42	Reduced olfactory acuity in recently flightless insects suggests rapid regressive evolution. Bmc Ecology and Evolution, 2022, 22, 50.	0.7	3
43	Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect. Insect Systematics and Diversity, 2022, 6, .	0.7	3
44	Phylogeography reveals a North Island range extension for New Zealand's only sexually wing-dimorphic stonefly (Stenoperla helsoni). New Zealand Journal of Zoology, 2019, 46, 253-260.	0.6	2
45	Does elevation influence mayfly emergence timing? A case study using New Zealand's endemic ephemeropteran fauna. Ecological Entomology, 2020, 45, 756-760.	1.1	2
46	Population structure of the New Zealand whelk, Cominella glandiformis (Gastropoda: Buccinidae), suggests sporadic dispersal of a direct developer. Biological Journal of the Linnean Society, 2020, 130, 49-60.	0.7	2
47	The complete chloroplast genome of the invasive fern Lygodium microphyllum (Cav.) R. Br Mitochondrial DNA Part B: Resources, 2018, 3, 746-747.	0.2	1
48	Digest: Dispersal reduction drives rapid diversification in alpine grasshoppers. Evolution; International Journal of Organic Evolution, 2021, 75, 2132-2134.	1.1	1
49	Biology and preliminary host range of a Korean leaf-mining Hydrellia sp. (Diptera: Ephydridae) rejected as a potential biological control agent for monoecious Hydrilla verticillata in the United States. Biocontrol Science and Technology, 2021, 31, 343-356.	0.5	1
50	Significant genetic structure in Macrobathra moths feeding on Acacia auriculiformis – implications for prioritising biological control agents. Biological Control, 2022, 172, 104969.	1.4	1
51	Two grain beetle species, one resource, different patterns of genetic structure: implications for management. Journal of Pest Science, 0, , 1.	1.9	Ο