Yu Han

List of Publications by Citations

Source: https://exaly.com/author-pdf/7880771/yu-han-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 169 426 32,343 h-index g-index citations papers 38,823 11.2 450 7.42 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
426	Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. <i>Nature</i> , 2010 , 463, 1061-5	50.4	2560
425	Hydrogen evolution by a metal-free electrocatalyst. <i>Nature Communications</i> , 2014 , 5, 3783	17.4	1572
424	Tuning upconversion through energy migration in core-shell nanoparticles. <i>Nature Materials</i> , 2011 , 10, 968-73	27	1372
423	Molecule-Level g-CN Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3336-3339	16.4	816
422	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. <i>Science</i> , 2016 , 353, 141-4	33.3	783
421	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16174-16181	16.4	586
420	Ordered macro-microporous metal-organic framework single crystals. <i>Science</i> , 2018 , 359, 206-210	33.3	570
419	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. <i>Nature Energy</i> , 2020 , 5, 131-140	62.3	552
418	Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8571-7	16.4	510
417	Enhancing multiphoton upconversion through energy clustering at sublattice level. <i>Nature Materials</i> , 2014 , 13, 157-62	27	435
416	Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8, 858	3211907	413
415	Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1412-5	16.4	398
414	Thermally stable single atom Pt/m-AlO for selective hydrogenation and CO oxidation. <i>Nature Communications</i> , 2017 , 8, 16100	17.4	390
413	High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. <i>Nature Communications</i> , 2015 , 6, 7315	17.4	369
412	A perfluorinated covalent triazine-based framework for highly selective and waterBolerant CO2 capture. <i>Energy and Environmental Science</i> , 2013 , 6, 3684	35.4	352
411	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5678-84	16.4	351
410	Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1258-1262	16.4	344

(2013-2015)

409	Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. <i>Nature Communications</i> , 2015 , 6, 7328	17.4	326	
408	Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. <i>Journal of the American Chemical Society</i> , 2001 , 123, 5014-7	216.4	325	
407	Out-of-Plane Piezoelectricity and Ferroelectricity in Layered 🗄 nSe Nanoflakes. <i>Nano Letters</i> , 2017 , 17, 5508-5513	11.5	317	
406	Introduction of Ecomplexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8654-60	16.4	304	
405	Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8698-8704	16.4	301	
404	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. <i>Nano Energy</i> , 2015 , 15, 634-641	17.1	290	
403	Lanthanide-doped Na(x)ScF(3+x) nanocrystals: crystal structure evolution and multicolor tuning. Journal of the American Chemical Society, 2012 , 134, 8340-3	16.4	286	
402	Synthesis of Heteroatom Substituted SBA-15 by the BH-AdjustinglMethod. <i>Chemistry of Materials</i> , 2004 , 16, 486-492	9.6	261	
401	Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. <i>Science</i> , 2018 , 359, 675-679	33.3	242	
400	Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. <i>Angewandte Chemie - International Edition</i> , 2004 , 44, 288-92	16.4	226	
399	Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. <i>Nature Communications</i> , 2019 , 10, 2467	17.4	218	
398	Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. <i>ACS Nano</i> , 2019 , 13, 2520-2525	16.7	218	
397	Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2503-10	16.4	214	
396	Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628	17.6	211	
395	Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. <i>Nature Materials</i> , 2017 , 16, 532-536	27	207	
394	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2363-2372	16.4	200	
393	A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7963-796	∂·4	200	
392	Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. <i>Journal of the American Chemical Society</i> 2013 , 135, 8552-61	16.4	198	

391	Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. <i>Journal of the American Chemical Society</i> , 2002 , 124, 888-9	16.4	195
390	Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3881-6	11.8	180
389	Superior Capture of CO2 Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon. <i>Chemistry of Materials</i> , 2012 , 24, 4725-4734	9.6	176
388	Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. <i>Nature Catalysis</i> , 2018 , 1, 540-546	36.5	175
387	The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. <i>Chemical Science</i> , 2014 , 5, 620-624	9.4	175
386	Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%. <i>Advanced Functional Materials</i> , 2020 , 30, 1909972	15.6	173
385	Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media. <i>Chemistry of Materials</i> , 2002 , 14, 1144-1148	9.6	168
384	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. <i>Nature Communications</i> , 2018 , 9, 1745	17.4	166
383	Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. <i>Macromolecules</i> , 2012 , 45, 3841-3849	5.5	163
382	Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. <i>Langmuir</i> , 2008 , 24, 5842-8	4	162
381	Metal Drganic Framework-Based Separators for Enhancing LiB Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367	20.1	160
380	Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals. <i>Chemistry of Materials</i> , 2017 , 29, 7108-7113	9.6	160
379	Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. <i>Nature Communications</i> , 2015 , 6, 6571	17.4	157
378	Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19726		157
377	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. <i>Joule</i> , 2019 , 3, 1963-1976	27.8	154
376	Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. <i>Nature Communications</i> , 2015 , 6, 6088	17.4	151
375	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. <i>Nature Communications</i> , 2016 , 7, 13059	17.4	144
374	Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. <i>Nature Chemistry</i> , 2016 , 8, 470-5	17.6	142

(2008-2003)

373	High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3633-7	16.4	142
372	3D Hierarchical ZnIn2S4 Nanosheets with Rich Zn Vacancies Boosting Photocatalytic CO2 Reduction. <i>Advanced Functional Materials</i> , 2019 , 29, 1905153	15.6	139
371	Tailor-Made Microporous Metal-Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. <i>Advanced Materials</i> , 2018 , 30, e1805088	24	139
370	A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 574-7	16.4	137
369	Pressure-Driven Enzyme Entrapment in Siliceous Mesocellular Foam. <i>Chemistry of Materials</i> , 2006 , 18, 643-649	9.6	137
368	Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. <i>Science Advances</i> , 2018 , 4, eaat6378	14.3	134
367	Full-color fluorescent carbon quantum dots. Science Advances, 2020, 6,	14.3	133
366	Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11850-60	3.6	131
365	Crystal Phase and Architecture Engineering of Lotus-Thalamus-Shaped Pt-Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution. <i>Advanced Materials</i> , 2018 , 30, e1801741	24	128
364	Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. <i>Materials Today Nano</i> , 2018 , 3, 69-95	9.7	128
363	Spherical Siliceous Mesocellular Foam Particles for High-Speed Size Exclusion Chromatography. <i>Chemistry of Materials</i> , 2007 , 19, 2292-2298	9.6	123
362	A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nature Chemistry, 2009, 1, 123-7	17.6	120
361	Multifunctional polypyrrole@Fe(3)O(4) nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. <i>Small</i> , 2014 , 10, 1063-8	11	119
360	Entropy-Driven Helical Mesostructure Formation with Achiral Cationic Surfactant Templates. <i>Advanced Materials</i> , 2007 , 19, 2454-2459	24	116
359	Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. <i>Nature Communications</i> , 2018 , 9, 1362	17.4	111
358	High-Performance Large-Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1600013	5.9	109
357	Investigating the Origin of Enhanced C Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4213-4222	16.4	109
356	Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions. <i>Chemistry - A European Journal</i> , 2008 , 14, 3118-25	4.8	108

355	Catalytic amino acid production from biomass-derived intermediates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5093-5098	11.5	107
354	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 10974-81	7.7	107
353	A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. <i>Advanced Energy Materials</i> , 2019 , 9, 1902279	21.8	105
352	CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23584-93	3.6	103
351	Point Defects and Green Emission in Zero-Dimensional Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5490-5495	6.4	103
350	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. <i>ACS Energy Letters</i> , 2020 , 5, 793-798	20.1	100
349	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. <i>Nature Communications</i> , 2017 , 8, 485	17.4	99
348	Direct Conversion of Cellulose to Glycolic Acid with a Phosphomolybdic Acid Catalyst in a Water Medium. <i>ACS Catalysis</i> , 2012 , 2, 1698-1702	13.1	99
347	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. <i>Nature Communications</i> , 2015 , 6, 6957	17.4	98
346	Microporous carbonaceous adsorbents for CO2 separation via selective adsorption. <i>RSC Advances</i> , 2015 , 5, 30310-30330	3.7	98
345	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5201-52	116.4	98
344	Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. <i>Carbon</i> , 2013 , 62, 88-96	10.4	95
343	Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. <i>Nature Nanotechnology</i> , 2016 , 11, 60-6	28.7	94
342	Synthesis of ultrathin face-centered-cubic au@pt and au@pd core-shell nanoplates from hexagonal-close-packed au square sheets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5672-6	16.4	94
341	A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2H2/CO2 at Room Temperature. <i>Angewandte Chemie</i> , 2015 , 127, 584-587	3.6	92
340	Edge Epitaxy of Two-Dimensional MoSe and MoS Nanosheets on One-Dimensional Nanowires. Journal of the American Chemical Society, 2017 , 139, 8653-8660	16.4	90
339	Towards super-clean graphene. <i>Nature Communications</i> , 2019 , 10, 1912	17.4	89
338	High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metalBrganic framework CuIIDPAT. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15823-15828	13	89

337	Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. <i>Nano Energy</i> , 2017 , 31, 456-461	17.1	88	
336	Chiral transformation: from single nanowire to double helix. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20060-3	16.4	87	
335	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. <i>Nanoscale</i> , 2015 , 7, 10162-9	7.7	85	
334	Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal-Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. <i>Chemistry - A European Journal</i> , 2016 , 22, 5676-83	4.8	85	
333	Defective Graphene Supported MPd12 (M = Fe, Co, Ni, Cu, Zn, Pd) Nanoparticles as Potential Oxygen Reduction Electrocatalysts: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1350-1357	3.8	83	
332	Palladium Nanoparticles/Defective Graphene Composites as Oxygen Reduction Electrocatalysts: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2710-2719	3.8	82	
331	Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. <i>ACS Nano</i> , 2019 , 13, 7556-7567	16.7	81	
330	New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 41837-41844	9.5	80	
329	Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. <i>Catalysis Today</i> , 2014 , 233, 77-82	5.3	80	
328	Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2000732	24	78	
327	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. <i>Joule</i> , 2019 , 3, 1703-1718	27.8	78	
326	Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 14937-41	11.5	77	
325	Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. <i>Small</i> , 2012 , 8, 2271-6	11	75	
324	Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. <i>Science Advances</i> , 2020 , 6,	14.3	74	
323	Light-Induced Self-Assembly of Cubic CsPbBr3 Perovskite Nanocrystals into Nanowires. <i>Chemistry of Materials</i> , 2019 , 31, 6642-6649	9.6	73	
322	Highly Selective and Complete Conversion of Cellobiose to Gluconic Acid over Au/Cs2HPW12O40 Nanocomposite Catalyst. <i>ChemCatChem</i> , 2011 , 3, 1294-1298	5.2	72	
321	Understanding of the High Hydrothermal Stability of the Mesoporous Materials Prepared by the Assembly of Triblock Copolymer with Preformed Zeolite Precursors in Acidic Media. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7551-7556	3.4	71	
320	Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: a first-principles investigation. <i>Catalysis Science and Technology</i> , 2015 , 5, 1658-1667	5.5	69	

319	Rationally Designed Efficient Dual-Mode Colorimetric/Fluorescence Sensor Based on Carbon Dots for Detection of pH and Cu2+ Ions. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12668-12674	8.3	69
318	Direct Observation of Nanorange Ordered Microporosity within Mesoporous Molecular Sieves. <i>Chemistry of Materials</i> , 2002 , 14, 2536-2540	9.6	69
317	Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. <i>ACS Catalysis</i> , 2015 , 5, 5837-5845	13.1	68
316	Electrostatic Stabilization of Single-Atom Catalysts by Ionic Liquids. <i>CheM</i> , 2019 , 5, 3207-3219	16.2	68
315	Direct conversion of cellulose using carbon monoxide and water on a PtMo2C/C catalyst. <i>Energy and Environmental Science</i> , 2014 , 7, 393-398	35.4	68
314	Precursor Engineering for Ambient-Compatible Antisolvent-Free Fabrication of High-Efficiency CsPbI2Br Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000691	21.8	68
313	Thickness-Dependent Dielectric Constant of Few-Layer InBelNanoflakes. <i>Nano Letters</i> , 2015 , 15, 8136-4	1011.5	67
312	Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. <i>Nanoscale</i> , 2013 , 5, 6950-9	7.7	67
311	Hierarchical Nanospheres Constructed by Ultrathin MoS Nanosheets Braced on Nitrogen-Doped Carbon Polyhedra for Efficient Lithium and Sodium Storage. <i>ACS Applied Materials & Company Storage</i> , 2019, 11, 2112-2119	9.5	67
310	[Al12P13O52]3-[(CH2)6N4H3]3+: An Anionic Aluminophosphate Molecular Sieve with Brflsted Acidity. <i>Chemistry of Materials</i> , 2000 , 12, 2517-2519	9.6	66
309	Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. <i>Chemical Science</i> , 2017 , 8, 795-799	9.4	64
308	High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. <i>Chemistry - A European Journal</i> , 2004 , 10, 5911-22	4.8	64
307	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries. <i>ACS Nano</i> , 2018 , 12, 836-843	16.7	63
306	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 819-825	16.4	63
305	Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. <i>Chemistry of Materials</i> , 2016 , 28, 1636-1646	9.6	61
304	Europium and Acetate Co-doping Strategy for Developing Stable and Efficient CsPbI Br Perovskite Solar Cells. <i>Small</i> , 2019 , 15, e1904387	11	61
303	Ultrasmall gold nanoparticles in cancer diagnosis and therapy. <i>Theranostics</i> , 2020 , 10, 4944-4957	12.1	61
302	Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. <i>Nature Communications</i> , 2018 , 9, 3132	17.4	60

301	The Development of YolkBhell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. <i>Advanced Functional Materials</i> , 2018 , 28, 1801737	15.6	60
300	Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances. <i>Small</i> , 2015 , 11, 5214-21	11	59
299	Synthesis, Characterization, and Catalytic Activity of Mesostructured Titanosilicates Assembled from Polymer Surfactants with Preformed Titanosilicate Precursors in Strongly Acidic Media. Journal of Physical Chemistry B, 2003 , 107, 8972-8980	3.4	59
298	One-of-a-kind: a microporous metalorganic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. <i>Energy and Environmental Science</i> , 2018 , 11, 1226-1231	35.4	58
297	Redox-responsive core cross-linked micelles based on cypate and cisplatin prodrugs-conjugated block copolymers for synergistic photothermal@hemotherapy of cancer. <i>Polymer Chemistry</i> , 2014 , 5, 3707-3718	4.9	58
296	Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: a first-principles study. <i>Dalton Transactions</i> , 2012 , 41, 1289-96	4.3	58
295	2D Cs2PbI2Cl2 Nanosheets for Holistic Passivation of Inorganic CsPbI2Br Perovskite Solar Cells for Improved Efficiency and Stability. <i>Advanced Energy Materials</i> , 2020 , 10, 2002882	21.8	58
294	Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers. <i>Journal of Controlled Release</i> , 2018 , 273, 30-39	11.7	57
293	Artificial channels for confined mass transport at the sub-nanometre scale. <i>Nature Reviews Materials</i> , 2021 , 6, 294-312	73.3	57
292	Highly Compatible Hydroxyl-Functionalized Microporous Polyimide-ZIF-8 Mixed Matrix Membranes for Energy Efficient Propylene/Propane Separation. <i>ACS Applied Nano Materials</i> , 2018 , 1, 3541-3547	5.6	57
291	Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination. <i>Nanoscale</i> , 2011 , 3, 4195-200	7.7	56
290	3D Crumpled Ultrathin 1T MoS for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. <i>ACS Nano</i> , 2020 , 14, 7308-7318	16.7	55
289	Functionalization of silicon nanowire surfaces with metal-organic frameworks. <i>Nano Research</i> , 2012 , 5, 109-116	10	55
288	High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8653	13	55
287	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10151-10159	16.4	55
286	A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. <i>CheM</i> , 2021 , 7, 699-714	16.2	53
285	A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5. <i>Journal of Catalysis</i> , 2017 , 348, 300-305	7.3	51
284	Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. <i>Journal of Membrane Science</i> , 2019 , 585, 1-9	9.6	51

283	Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: a first-principles investigation. <i>RSC Advances</i> , 2014 , 4, 38750-38760	3.7	51
282	Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites. <i>Advanced Functional Materials</i> , 2016 , 26, 1881-1891	15.6	51
281	Simultaneous Cesium and Acetate Coalloying Improves Efficiency and Stability of FA0.85MA0.15Pbi3 Perovskite Solar Cell with an Efficiency of 21.95%. <i>Solar Rrl</i> , 2019 , 3, 1900220	7.1	50
280	Novel Surface Passivation for Stable FA0.85MA0.15PbI3 Perovskite Solar Cells with 21.6% Efficiency. <i>Solar Rrl</i> , 2019 , 3, 1900072	7.1	49
279	Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. <i>Journal of Controlled Release</i> , 2018 , 284, 15-25	11.7	49
278	Chiral gold nanowires with Boerdijk-Coxeter-Bernal structure. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12746-52	16.4	49
277	Preparation of a Ru-Nanoparticles/Defective-Graphene Composite as a Highly Efficient Arene-Hydrogenation Catalyst. <i>ChemCatChem</i> , 2012 , 4, 1938-1942	5.2	49
276	Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 Separation. <i>Chemistry of Materials</i> , 2018 , 30, 3467-3473	9.6	48
275	One-Step Preparation of Zeolite Silicalite-1 Microspheres with Adjustable Macroporosity. <i>Chemistry of Materials</i> , 2009 , 21, 2344-2348	9.6	48
274	Direct Imaging of Isolated Single-Molecule Magnets in Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2997-3005	16.4	48
273	Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. <i>RSC Advances</i> , 2017 , 7, 3265-3272	3.7	47
272	Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12021-12028	16.4	47
271	Stable iron-incorporated mesoporous silica materials (MFS-9) prepared in strong acidic media. <i>Microporous and Mesoporous Materials</i> , 2003 , 57, 191-198	5.3	47
270	Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers. <i>Nano Letters</i> , 2016 , 16, 617-23	11.5	46
269	Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: a first-principles investigation. <i>RSC Advances</i> , 2015 , 5, 10452-10459	3.7	46
268	Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields. <i>ACS Nano</i> , 2020 , 14, 14761-14768	16.7	46
267	van der Waals epitaxial growth of atomically thin Bißeland thickness-dependent topological phase transition. <i>Nano Letters</i> , 2015 , 15, 2645-51	11.5	45
266	Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 30-35	13	45

265	Modular Design and Facile Synthesis of Enzyme-Responsive Peptide-Linked Block Copolymers for Efficient Delivery of Doxorubicin. <i>Biomacromolecules</i> , 2016 , 17, 3268-3276	6.9	45
264	Facile Synthesis of Highly Water-Soluble Lanthanide-Doped t-LaVO NPs for Antifake Ink and Latent Fingermark Detection. <i>Small</i> , 2017 , 13, 1702305	11	45
263	Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus. <i>Chemistry of Materials</i> , 2017 , 29, 135	6 9. 6 35	644
262	Gate tunable giant anisotropic resistance in ultra-thin GaTe. <i>Nature Communications</i> , 2019 , 10, 2302	17.4	44
261	Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2206-19	9 ^{10.1}	44
2 60	Confined Lithium-Sulfur Reactions in Narrow-Diameter Carbon Nanotubes Reveal Enhanced Electrochemical Reactivity. <i>ACS Nano</i> , 2018 , 12, 9775-9784	16.7	44
259	Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene. <i>Nanoscale</i> , 2012 , 4, 2288-95	7.7	43
258	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. <i>Energy and Environmental Science</i> , 2020 , 13, 229-237	35.4	43
257	Flame Retardant and Stable Li1.5Al0.5Ge1.5(PO4)3-Supported Ionic Liquid Gel Polymer Electrolytes for High Safety Rechargeable Solid-State Lithium Metal Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10334-10342	3.8	42
256	Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6860-6865	13	41
255	Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. <i>Frontiers in Microbiology</i> , 2014 , 5, 682	5.7	41
254	Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide coreBhell nanoparticles derived from metalBrganic framework composites for efficient oxygen electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3624-3631	13	40
253	Intergrown New Zeolite Beta Polymorphs with Interconnected 12-Ring Channels Solved by Combining Electron Crystallography and Single-Crystal X-ray Diffraction. <i>Chemistry of Materials</i> , 2012 , 24, 3701-3706	9.6	40
252	Interfacing with Carbonaceous Potassium Promoters Boosts Catalytic CO2 Hydrogenation of Iron. <i>ACS Catalysis</i> , 2020 , 10, 12098-12108	13.1	40
251	Bone-Targeted Mesoporous Silica Nanocarrier Anchored by Zoledronate for Cancer Bone Metastasis. <i>Langmuir</i> , 2016 , 32, 9237-44	4	39
250	Hypoxia-responsive block copolymer radiosensitizers as anticancer drug nanocarriers for enhanced chemoradiotherapy of bulky solid tumors. <i>Biomaterials</i> , 2018 , 181, 360-371	15.6	39
249	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI2Br Perovskite Solar Cells with an Efficiency Exceeding 15%. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900311	6.8	39
248	Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition. <i>RSC Advances</i> , 2013 , 3, 17287	3.7	39

247	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht-Type Metal Drganic Framework. <i>Angewandte Chemie</i> , 2012 , 124, 1441-1444	3.6	38
246	Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks. <i>Advanced Materials</i> , 2020 , 32, e1906103	24	38
245	[Cu(PhS)(BuNH)(H)] Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8696-8705	16.4	37
244	Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework. <i>Macromolecular Rapid Communications</i> , 2018 , 39, 1700468	4.8	36
243	A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSex)2 nanocrystals. <i>Nanoscale</i> , 2014 , 6, 6782-9	7.7	36
242	A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. <i>Small</i> , 2008 , 4, 2051-8	11	36
241	Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. <i>ACS Nano</i> , 2020 , 14, 10688-10703	16.7	36
240	Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. <i>Nature Materials</i> , 2021 , 20, 362-369	27	36
239	Self-powered seawater desalination and electrolysis using flowing kinetic energy. <i>Nano Energy</i> , 2015 , 15, 266-274	17.1	35
238	Preparation of zeolite A membranes by microwave heating. <i>Microporous and Mesoporous Materials</i> , 1999 , 30, 321-326	5.3	35
237	Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids. <i>RSC Advances</i> , 2014 , 4, 35463-35466	3.7	33
236	Ordered mesoporous silica materials with complicated structures. <i>Current Opinion in Chemical Engineering</i> , 2012 , 1, 129-137	5.4	33
235	High activity in catalytic cracking over stable mesoporous aluminosilicates. <i>Catalysis Today</i> , 2001 , 68, 209-216	5.3	33
234	Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm ENaYbF4:0.5% Tm nanoparticles via Fe3+ doping. <i>CrystEngComm</i> , 2017 , 19, 1304-1310	3.3	32
233	On demand synthesis of hollow fullerene nanostructures. <i>Nature Communications</i> , 2019 , 10, 1548	17.4	32
232	Atomic-Resolution Imaging of Halide Perovskites Using Electron Microscopy. <i>Advanced Energy Materials</i> , 2020 , 10, 1904006	21.8	32
231	Defect stabilized gold atoms on graphene as potential catalysts for ethylene epoxidation: a first-principles investigation. <i>Catalysis Science and Technology</i> , 2016 , 6, 1632-1641	5.5	32
230	Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and Fe2O3 nanocrystals. <i>Journal of Solid State Chemistry</i> , 2012 , 196, 138-144	3.3	32

(2021-2003)

229	Silica nanobottles templated from functional polymer spheres. <i>Journal of Colloid and Interface Science</i> , 2003 , 263, 467-72	9.3	32
228	Microporosity in Ordered Mesoporous Aluminosilicates Characterized by Catalytic Probing Reactions. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 1853-1857	3.4	32
227	Engineering effective structural defects of metalorganic frameworks to enhance their catalytic performances. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4464-4472	13	31
226	Emergence of multiple fluorophores in individual cesium lead bromide nanocrystals. <i>Nature Communications</i> , 2019 , 10, 2930	17.4	31
225	Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures. <i>Angewandte Chemie</i> , 2005 , 117, 292-296	3.6	31
224	Converting Hierarchical to Bulk Structure: A Strategy for Encapsulating Metal Oxides and Noble Metals in Zeolites. <i>Chemistry of Materials</i> , 2018 , 30, 6361-6369	9.6	30
223	One-pot synthesis Of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis. <i>Catalysis Science and Technology</i> , 2013 , 3, 3360	5.5	30
222	Rapid microwave-enhanced hydrothermal synthesis and shape evolution of uniform NaGdF4:Yb, Er (Tm/Ho) nanocrystals with upconversion and paramagnetic properties. <i>Nanotechnology</i> , 2012 , 23, 2257	0 3 :4	30
221	Tumor-Associated-Macrophage-Membrane-Coated Nanoparticles for Improved Photodynamic Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 5522-5531	11.5	30
220	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. <i>Langmuir</i> , 2018 , 34, 14546-14551	4	30
219	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13162-13169	16.4	29
218	Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. <i>Angewandte Chemie</i> , 2001 , 113, 1298-1302	3.6	29
217	A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23. <i>Nano-Micro Letters</i> , 2021 , 13, 169	19.5	29
216	Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. <i>Advanced Materials</i> , 2017 , 29, 1605826	24	28
215	Design, synthesis, and antiviral activity of novel rutin derivatives containing 1, 4-pentadien-3-one moiety. <i>European Journal of Medicinal Chemistry</i> , 2015 , 92, 732-7	6.8	28
214	Unique reactivity of Fe nanoparticles-defective graphene composites toward NH(x) (x = 0, 1, 2, 3) adsorption: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15036-45	3.6	28
213	Perovskite-Nanosheet Sensitizer for Highly Efficient Organic X-ray Imaging Scintillator. <i>ACS Energy Letters</i> ,10-16	20.1	28
212	A single-molecule van der Waals compass. <i>Nature</i> , 2021 , 592, 541-544	50.4	28

211	Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. <i>Nano-Micro Letters</i> , 2021 , 13, 136	19.5	28
210	Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3509-3518	16.4	28
209	Towards the development of the emerging process of CO heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. <i>Chemical Society Reviews</i> , 2021 , 50, 10764-10805	58.5	27
208	Synthesis of Ultrathin Face-Centered-Cubic Au@Pt and Au@Pd CoreBhell Nanoplates from Hexagonal-Close-Packed Au Square Sheets. <i>Angewandte Chemie</i> , 2015 , 127, 5764-5768	3.6	26
207	From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation. <i>Chemical Communications</i> , 2016 , 52, 13897-13900	5.8	26
206	Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021 , 143, 6681-6690	16.4	26
205	Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2195-2212	7.8	25
204	Tailoring the Edge Sites of 2D Pd Nanostructures with Different Fractal Dimensions for Enhanced Electrocatalytic Performance. <i>Advanced Science</i> , 2018 , 5, 1800430	13.6	25
203	Functionalized metal organic frameworks for effective capture of radioactive organic iodides. <i>Faraday Discussions</i> , 2017 , 201, 47-61	3.6	25
202	Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support. <i>Chemistry - A European Journal</i> , 2012 , 18, 7394-403	4.8	25
201	Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7, 326-32	11	25
200	Superior Catalytic Performance of Atomically Dispersed Palladium on Graphene in CO Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 3084-3093	13.1	24
199	Preparation and characterization of nanocomposite ionic liquid-based gel polymer electrolyte for safe applications in solid-state lithium battery. <i>Solid State Ionics</i> , 2018 , 321, 48-54	3.3	24
198	Wavelength-Tuned Light Emission via Modifying the Band Edge Symmetry: Doped SnO2 as an Example. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6365-6371	3.8	24
197	Rho kinase inhibition by fasudil suppresses lipopolysaccharide-induced apoptosis of rat pulmonary microvascular endothelial cells via JNK and p38 MAPK pathway. <i>Biomedicine and Pharmacotherapy</i> , 2014 , 68, 267-75	7.5	24
196	Controlled Synthesis of the Tricontinuous Mesoporous Material IBN-9 and Its Carbon and Platinum Derivatives. <i>Chemistry of Materials</i> , 2011 , 23, 3775-3786	9.6	24
195	Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations. <i>Advanced Materials</i> , 2020 , 32, e2001132	24	24
194	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membrane-Based Fluid Separations. <i>Small Structures</i> , 2021 , 2, 2100049	8.7	24

(2014-2020)

193	Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal-Organic Framework Material with Optimal Pore Dimensions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6925-6929	16.4	23
192	Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. <i>RSC Advances</i> , 2016 , 6, 101638-101644	3.7	23
191	Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt Hydroxyapatite Catalyst. <i>ACS Catalysis</i> , 2019 , 9, 7204-7216	13.1	23
190	Strain-activated edge reconstruction of graphene nanoribbons. <i>Physical Review B</i> , 2012 , 85,	3.3	23
189	Siliceous mesocellular foam for high-performance liquid chromatography: Effect of morphology and pore structure. <i>Journal of Chromatography A</i> , 2010 , 1217, 4337-43	4.5	23
188	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM-5. <i>Angewandte Chemie</i> , 2020 , 132, 829-835	3.6	23
187	Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. <i>Nano Energy</i> , 2020 , 78, 105326	17.1	23
186	Fine Tuning the Diffusion Length in Hierarchical ZSM-5 To Maximize the Yield of Propylene in Catalytic Cracking of Hydrocarbons. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15832-15840	8.3	23
185	Preparation, characterization, and optical properties of the host-guest nanocomposite material zeolite-silver iodide. <i>Materials Research Bulletin</i> , 2000 , 35, 59-73	5.1	22
184	Rational Design of Oxygen-Enriched Carbon Dots with Efficient Room-Temperature Phosphorescent Properties and High-Tech Security Protection Application. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19918-19924	8.3	22
183	Plasmonic-Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. <i>Solar Rrl</i> , 2019 , 3, 1900138	7.1	21
182	Enhancement of TCE removal by a static magnetic field in a fungal biotrickling filter. <i>Bioresource Technology</i> , 2018 , 259, 365-372	11	21
181	Highly stable porous covalent triazinepiperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture. <i>Chemical Engineering Science</i> , 2016 , 145, 21-30	4.4	21
180	Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries. <i>Electrochimica Acta</i> , 2018 , 288, 101-107	6.7	21
179	Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22432-22440	16.4	21
178	Metal-Based Nanocatalyst for Combined Cancer Therapeutics. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1247-	1258	20
177	Observation of superconductivity in structure-selected Ti2O3 thin films. <i>NPG Asia Materials</i> , 2018 , 10, 522-532	10.3	20
176	Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support. <i>RSC Advances</i> , 2014 , 4, 22230-22240	3.7	20

175	Synthesis of WO -WX (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10486-10490	16.4	20
174	Bulk and local structures of metal@rganic frameworks unravelled by high-resolution electron microscopy. <i>Communications Chemistry</i> , 2020 , 3,	6.3	20
173	Oxygen-Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1123-1128	16.4	20
172	Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high- ZT Thermoelectric devices. <i>Nano Energy</i> , 2017 , 38, 385-391	17.1	19
171	Selective Acetylene Adsorption within an Imino-Functionalized Nanocage-Based Metal-Organic Framework. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	19
170	Density of States and Its Local Fluctuations Determined by Capacitance of Strongly Disordered Graphene. <i>Scientific Reports</i> , 2013 , 3,	4.9	19
169	Extension of Surface Organometallic Chemistry to Metal-Organic Frameworks: Development of a Well-Defined Single Site [(?Zr-O-)W(?O)(CHBu)] Olefin Metathesis Catalyst. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16690-16703	16.4	19
168	Propane Dehydrogenation Catalyzed by Isolated Pt Atoms in ?SiOZn-OH Nests in Dealuminated Zeolite Beta. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	19
167	Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral O -type cage for high performance in methane purification. <i>Chemistry - A European Journal</i> , 2018 , 24, 13181-13187	4.8	18
166	Rational design of Au nanorods assemblies for highly sensitive and selective SERS detection of prostate specific antigen. <i>RSC Advances</i> , 2015 , 5, 38354-38360	3.7	18
165	Characterization of Microporosity in Ordered Mesoporous Material MAS-7 by129Xe NMR Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3728-3734	3.4	18
164	Recent Progress and Prospects of Layered Cathode Materials for Potassium-ion Batteries. <i>Energy and Environmental Materials</i> , 2021 , 4, 178-200	13	18
163	-Phenylenediammonium as a New Spacer for Dion-Jacobson Two-Dimensional Perovskites. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12063-12073	16.4	18
162	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. <i>Nanoscale</i> , 2016 , 8, 2594-600	7.7	17
161	Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags. <i>Journal of Biotechnology</i> , 2017 , 249, 1-9	3.7	17
160	Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide. <i>ChemCatChem</i> , 2016 , 8, 1699-1707	5.2	17
159	Detection of resonant impurities in graphene by quantum capacitance measurement. <i>Physical Review B</i> , 2014 , 89,	3.3	17
158	Lithiation-induced shuffling of atomic stacks. <i>Nano Letters</i> , 2014 , 14, 5301-7	11.5	17

157	Detection of interlayer interaction in few-layer graphene. Physical Review B, 2015, 92,	3.3	17	
156	Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 33-40	2.2	17	
155	Magnetic MOF for AO7 Removal and Targeted Delivery. <i>Crystals</i> , 2018 , 8, 250	2.3	16	
154	Electron-electron interactions in monolayer graphene quantum capacitors. <i>Nano Research</i> , 2013 , 6, 619	-626	16	
153	Fabrication of the Tricontinuous Mesoporous IBN-9 Structure with Surfactant CTAB. <i>Chemistry of Materials</i> , 2011 , 23, 5250-5255	9.6	16	
152	Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 746-751	16.4	16	
151	Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons. <i>Catalysis Science and Technology</i> , 2016 , 6, 8157-8165	5.5	16	
150	A unique 3D ultramicroporous triptycene-based polyimide framework for efficient gas sorption applications. <i>RSC Advances</i> , 2016 , 6, 97560-97565	3.7	16	
149	Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non-oxidative Methane Dehydroaromatization on Mo/H-ZSM-5 Catalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15577-15582	16.4	16	
148	NOD2 pathway via RIPK2 and TBK1 is involved in the aberrant catabolism induced by T-2 toxin in chondrocytes. <i>Osteoarthritis and Cartilage</i> , 2015 , 23, 1575-85	6.2	15	
147	Construction of Amorphous FePO4 Nanosheets with Enhanced Sodium Storage Properties. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4395-4402	6.1	15	
146	Nanoscale pathways for human tooth decay - Central planar defect, organic-rich precipitate and high-angle grain boundary. <i>Biomaterials</i> , 2020 , 235, 119748	15.6	15	
145	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7144-7153	16.4	15	
144	A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization. <i>Environmental Science & Environmental </i>	5 60 3	15	
143	Probing the electronic states and impurity effects in black phosphorus vertical heterostructures. <i>2D Materials</i> , 2016 , 3, 015012	5.9	15	
142	Strain-Mediated Interfacial Dynamics during Au-PbS Core-Shell Nanostructure Formation. <i>ACS Nano</i> , 2016 , 10, 6235-40	16.7	15	
141	Facile synthesis of Pd@Ru nanoplates with controlled thickness as efficient catalysts for hydrogen evolution reaction. <i>CrystEngComm</i> , 2018 , 20, 4230-4236	3.3	15	
140	Pore fabrication in various silica-based nanoparticles by controlled etching. <i>Langmuir</i> , 2010 , 26, 11784-9	4	14	

139	Uniform High-k Amorphous Native Oxide Synthesized by Oxygen Plasma for Top-Gated Transistors. <i>Nano Letters</i> , 2020 , 20, 7469-7475	11.5	14
138	Copper-Catalyzed Dehydrogenative Diels-Alder Reaction. <i>Organic Letters</i> , 2018 , 20, 3215-3219	6.2	14
137	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals <i>Nature</i> , 2022 , 602, 606-6	15 0.4	14
136	Wafer-scale single-crystal monolayer graphene grown on sapphire substrate <i>Nature Materials</i> , 2022 ,	27	13
135	Novel synergistic coupling composite chelating copolymer/LAGP solid electrolyte with optimized interface for dendrite-free solid Li-metal battery. <i>Electrochimica Acta</i> , 2019 , 296, 693-700	6.7	13
134	Gas separation and water desalination performance of defect-free interfacially polymerized para-linked polyamide thin-film composite membranes. <i>Journal of Membrane Science</i> , 2021 , 618, 11857.	<u>9</u> .6	13
133	Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4176-80	16.4	12
132	Improved Structural Order, Stability, and Anion-Exchange Capacity of Cation-Mediated Bridged Hybrid Mesoscopic Materials by Using Chelating Ligands. <i>Chemistry of Materials</i> , 2004 , 16, 3507-3512	9.6	12
131	High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon⊞ydrocarbon Surfactant Mixtures. <i>Angewandte Chemie</i> , 2003 , 115, 3761-3765	3.6	12
130	Maintenance of SOX9 stability and ECM homeostasis by selenium-sensitive PRMT5 in cartilage. <i>Osteoarthritis and Cartilage</i> , 2019 , 27, 932-944	6.2	11
129	Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9035-9039	13	11
128	Seed-mediated synthesis, properties and application of Fe2O3IIdSe magnetic quantum dots. Journal of Solid State Chemistry, 2011 , 184, 2150-2158	3.3	11
127	Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbIBr Solar Cells. <i>Nano-Micro Letters</i> , 2021 , 14, 7	19.5	11
126	Selective catalytic properties determined by the molecular skeleton: Two new isostructural coordination polymers[{M(H2O)5}2(E4-bpdh)(oba)][[M = Co, Ni). <i>Inorganica Chimica Acta</i> , 2017 , 461, 15-20	2.7	10
125	The role of curvature in silica mesoporous crystals. <i>Interface Focus</i> , 2012 , 2, 634-44	3.9	10
124	A solar-electro-thermal evaporation system with high water-production based on a facile integrated evaporator. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21771-21779	13	10
123	Room-Temperature Valley Polarization in Atomically Thin Semiconductors Chalcogenide Alloying. <i>ACS Nano</i> , 2020 , 14, 9873-9883	16.7	10
122	Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. <i>Materials Today</i> , 2021 , 50, 358-358	21.8	10

121	Layer number dependent ferroelasticity in 2D Ruddlesden-Popper organic-inorganic hybrid perovskites. <i>Nature Communications</i> , 2021 , 12, 1332	17.4	10
120	Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non-oxidative Methane Dehydroaromatization on Mo/H-ZSM-5 Catalysts. <i>Angewandte Chemie</i> , 2018 , 130, 15803-15808	3.6	10
119	p-Type Carbon Dots for Effective Surface Optimization for Near-Record-Efficiency CsPbI Br Solar Cells. <i>Small</i> , 2021 , 17, e2102272	11	10
118	Anion-Exchange Properties and Reversible Phase Transitions of Metal-Cation-Mediated Bridged OrganicIhorganic Hybrid Mesoscopic Materials. <i>Chemistry of Materials</i> , 2003 , 15, 74-77	9.6	9
117	Application of logarithmic x-axis on adsorption isotherms to improve micropore analysis. <i>Microporous and Mesoporous Materials</i> , 2001 , 42, 325-336	5.3	9
116	Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation. <i>Catalysis Science and Technology</i> , 2017 , 7, 2012-2021	5.5	8
115	Negative compressibility observed in graphene containing resonant impurities. <i>Applied Physics Letters</i> , 2013 , 102, 203103	3.4	8
114	Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors. <i>Nanoscale</i> , 2012 , 4, 6256-9	7.7	8
113	Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography. <i>Microporous and Mesoporous Materials</i> , 2011 , 146, 88-96	5.3	8
112	Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8
111	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie</i> , 2020 , 132, 10237-10245	3.6	8
110	Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy. <i>Science China Materials</i> , 2020 , 63, 2429-2434	7.1	8
109	High-Efficiency Separation of n-Hexane by a Dynamic Metal-Organic Framework with Reduced Energy Consumption. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10593-10597	16.4	8
108	Corelihell and alloy integrating PdAu bimetallic nanoplates on reduced graphene oxide for efficient and stable hydrogen evolution catalysts. <i>RSC Advances</i> , 2017 , 7, 43373-43379	3.7	7
107	Synthesis of WOn-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes. <i>Angewandte Chemie</i> , 2017 , 129, 10622-10626	3.6	7
106	Luminescent Copper(I) Halides for Optoelectronic Applications. <i>Physica Status Solidi - Rapid Research Letters</i> ,2100138	2.5	7
105	[CuH(PET)(PPh)Cl] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society, 2021 , 143, 11026-11035	16.4	7
104	Electrochemical Conversion of CO2 to 2-Bromoethanol in a Membraneless Cell. <i>ACS Energy Letters</i> , 2019 , 4, 600-605	20.1	6

103	Photoinduced synthesis of Bi2O3 nanotubes based on oriented attachment. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1424-1428	13	6
102	Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors. <i>Applied Physics Letters</i> , 2014 , 105, 243507	3.4	6
101	Pyrolysis of polyborosilazane and its conversion into SiBN ceramic. <i>Advances in Applied Ceramics</i> , 2014 , 113, 367-371	2.3	6
100	Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst. <i>Chemistry of Materials</i> , 2012 , 24, 3269-3278	9.6	6
99	Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites. <i>Journal of Materials Chemistry A</i> ,	13	6
98	Cyanamide Passivation Enables Robust Elemental Imaging of Metal Halide Perovskites at Atomic Resolution. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10402-10409	6.4	6
97	In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. <i>Ionics</i> , 2020 , 26, 2335-234	12. ₇	6
96	Selective catalytic properties of new microporous cobalt metal-organic frameworks controlled by their structural topologies. <i>Materials Letters</i> , 2016 , 184, 73-77	3.3	6
95	Separation of hexane isomers by introducing E riangular-like and quadrilateral-like channels I n a bcu-type metal-organic framework. <i>Nano Research</i> , 2021 , 14, 526-531	10	6
94	Probing the Catalytic Active Sites of Mo/HZSM-5 and Their Deactivation during Methane Dehydroaromatization. <i>Cell Reports Physical Science</i> , 2021 , 2, 100309	6.1	6
93	Pristine and Carboxyl-Functionalized Tetraphenylethylene-Based Ladder Networks for Gas Separation and Volatile Organic Vapor Adsorption. <i>ACS Omega</i> , 2018 , 3, 15966-15974	3.9	6
92	Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation <i>Science Advances</i> , 2022 , 8, eabm6741	14.3	6
91	Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle. <i>ACS Catalysis</i> , 2020 , 10, 3009-3017	13.1	5
90	Synthesis of a microporous poly-benzimidazole as high performance anode materials for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 405, 126621	14.7	5
89	Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction. <i>Journal of Energy Chemistry</i> , 2021 , 62, 71-102	12	5
88	Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride. <i>ChemistrySelect</i> , 2017 , 2, 9412-9419	1.8	4
87	A New Type of Capping Agent in Nanoscience: Metal Cations. <i>Small</i> , 2019 , 15, e1900444	11	4
86	Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/NaH2O2 batteries with hybrid electrolytes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3491-3498	13	4

85	Evaluation of chiral separation efficiency of a novel OTPTHE derivatization reagent: Applications to liquid-chromatographic determination of DL-serine in human plasma. <i>Chirality</i> , 2019 , 31, 1043-1052	2.1	4
84	Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 649-656	2.6	4
83	Microscopy of Nanoporous Crystals. Springer Handbooks, 2019 , 1391-1450	1.3	4
82	Li2SIIi3PS4 (LPS) Composite Synthesized by Liquid-Phase Shaking for All-Solid-State LithiumBulfur Batteries with High Performance. <i>Energy Technology</i> , 2020 , 8, 2000023	3.5	4
81	Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3047-3054	16.4	4
80	Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. <i>Energy Material Advances</i> , 2021 , 2021, 1-9	1	4
79	Highly Potassiophilic Graphdiyne Skeletons Decorated with Cu Quantum Dots Enable Dendrite-Free Potassium Metal Anodes <i>Advanced Materials</i> , 2022 , e2202685	24	4
78	Size-controlled synthesis of Au nanorings on Pd ultrathin nanoplates as efficient catalysts for hydrogenation. <i>CrystEngComm</i> , 2017 , 19, 6588-6593	3.3	3
77	Adsorption, diffusion and aggregation of Ir atoms on graphdiyne: a first-principles investigation. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 25841-25847	3.6	3
76	Facile synthesis of a mixed-conductive Li2S composites for all-solid-state lithium-sulfur batteries. <i>Ionics</i> , 2020 , 26, 4257-4265	2.7	3
75	Design of ionic liquid-based hybrid electrolytes with additive for lithium insertion in graphite effectively and their effects on interfacial properties. <i>Ionics</i> , 2018 , 24, 2601-2609	2.7	3
74	Oxoprothracarcin, a novel pyrrolo[1,4]benzodiazepine antibiotic from marine Streptomyces sp. M10946. <i>Drug Discoveries and Therapeutics</i> , 2013 , 7, 243-7	5	3
73	Nano-Confinement Effects on Structural Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films. <i>ACS Applied Materials & Development & Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films. ACS Applied Materials & Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films. <i>ACS Applied Materials & Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films.</i></i>	9.5	3
72	Influence of metal ions on the selective catalytic oxidation properties of isostructural MOFs. <i>Inorganica Chimica Acta</i> , 2018 , 471, 176-179	2.7	3
71	Upgrading Octane Number of Naphtha by a Robust and Easily Attainable Metal-Organic Framework through Selective Molecular Sieving of Alkane Isomers. <i>Chemistry - A European Journal</i> , 2021 , 27, 11795	- 11 8798	3 3
70	Facile Exfoliation of Two-Dimensional Crystalline Monolayer Nanosheets from an Amorphous Metal D rganic Framework. <i>CCS Chemistry</i> ,2372-2381	7.2	3
69	The formation and evolution of carbonate species in CO oxidation over mono-dispersed Fe on graphene. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 10509-10517	3.6	3
68	Cryogenic Focused Ion Beam Enables Atomic-Resolution Imaging of Local Structures in Highly Sensitive Bulk Crystals and Devices <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3

67	Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 595-604	9.3	3
66	Effect of conductor materials in lithium composite anode on plating and stripping of lithium. <i>Ionics</i> , 2020 , 26, 3307-3314	2.7	2
65	Theoretical Study on Cobalt Ferrite ConFe3🛭O4 (n = 1🗗) Nanoparticles with Multi-enzyme Activities. <i>Catalysis Surveys From Asia</i> , 2020 , 24, 166-177	2.8	2
64	Fluctuation-induced tunneling conduction in iodine-doped bilayer graphene. <i>Journal of Applied Physics</i> , 2018 , 123, 244302	2.5	2
63	Cryo Focused Ion Beam Applications in High Resolution Electron Microscopy Studies of Beam Sensitive Crystals. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1402-1403	0.5	2
62	Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy. <i>Bioprocess and Biosystems Engineering</i> , 2019 , 42, 1739	9 ³ 1 ⁷ 746	_ 2
61	Understanding the Enhanced Catalytic Performance of Ultrafine Transition Metal Nanoparticles@raphene Composites. <i>Journal of Molecular and Engineering Materials</i> , 2015 , 03, 1540002	1.3	2
60	Direct Observation of Surface Reconstruction and Termination on a Complex Metal Oxide Catalyst by Electron Microscopy. <i>Angewandte Chemie</i> , 2012 , 124, 4252-4256	3.6	2
59	Tailor and Control of Acidic Strength in Ordered Mesoporous Aluminosilicates by Using Preformed Zeolite Precursors. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 9-13	4.9	2
58	Stable ordered mesoporous titanosilicates with active catalytic sites. <i>Studies in Surface Science and Catalysis</i> , 2003 , 565-568	1.8	2
57	Engineering the interplanar spacing of K-birnessite for ultra-long cycle Zn-ion battery through Bydrothermal potassium insertion trategy. <i>Chemical Engineering Journal</i> , 2022 , 435, 134754	14.7	2
56	Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. <i>Microporous and Mesoporous Materials</i> , 2021 , 111566	5.3	2
55	Facile synthesis and gas transport properties of Hālich's base-derived intrinsically microporous polyimides. <i>Polymer</i> , 2020 , 201, 122619	3.9	2
54	Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging. <i>Angewandte Chemie</i> , 2020 , 132, 756-761	3.6	2
53	Anodic SnO porous nanostructures with rich grain boundaries for efficient CO electroreduction to formate <i>RSC Advances</i> , 2020 , 10, 22828-22835	3.7	2
52	Noble metal nanowire arrays as an ethanol oxidation electrocatalyst. <i>Nanoscale Advances</i> , 2021 , 3, 177-	181	2
51	Modifying Ionic Membranes with Carbon Dots Enables Direct Production of High-Purity Hydrogen through Water Electrolysis. <i>ACS Applied Materials & Electrolysis</i> , 13, 39304-39310	9.5	2
50	Possible Misidentification of Heteroatom Species in Scanning Transmission Electron Microscopy Imaging of Zeolites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18952-18960	3.8	2

(2021-2021)

49	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membrane-Based Fluid Separations. <i>Small Structures</i> , 2021 , 2, 2170026	8.7	2
48	Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity. <i>Angewandte Chemie</i> , 2021 , 133, 22606-22614	3.6	2
47	Interface Engineering of Bi-Fluorescence Molecules for High-Performance Data Encryption and Ultralow UV-Light Detection. <i>Advanced Optical Materials</i> ,2200417	8.1	2
46	Structural Diversity in Ordered Mesoporous Silica Materials 2014 , 1-34		1
45	Experimental Evidence of Chiral Gold Nanowires with Boerdijk-Coxeter-Bernal Structure by Atomic-Resolution Imaging. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1060-1061	0.5	1
44	Spatial Propagation Characteristics of 28 GHz Frequency Band in UMi Scenario 2017 ,		1
43	Nanocrystals: Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances (Small 39/2015). <i>Small</i> , 2015 , 11, 5328-5328	11	1
42	Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications. <i>ACS Symposium Series</i> , 2015 , 213-243	0.4	1
41	Correction to Controlled Synthesis of the Tricontinuous Mesoporous Material IBN-9 and Its Carbon and Platinum Derivatives. <i>Chemistry of Materials</i> , 2012 , 24, 1547-1547	9.6	1
40	Research on Optical Air Chamber of Infrared Gas Sensor 2010 ,		1
39	Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 711-714	4.9	1
38	Analysis of the n-GaN electrochemical etching process and its mechanism in oxalic acid <i>RSC Advances</i> , 2022 , 12, 4648-4655	3.7	1
37	Highly sensitive novel fluorescent chiral probe possessing (S)-2-methylproline structures for the determination of chiral amino compounds by ultra-performance liquid chromatography with fluorescence: An application in the saliva of healthy volunteer <i>Journal of Chromatography A</i> , 2021 ,	4.5	1
36	1661, 462672 High-Efficiency Separation of n-Hexane by a Dynamic Metal-Organic Framework with Reduced Energy Consumption. <i>Angewandte Chemie</i> , 2021 , 133, 10687-10691	3.6	1
35	Theoretical Insight on Highly Efficient Electrocatalytic CO2 Reduction Reaction of Monoatom Dispersion Catalyst (Metal-Nitrogen-Carbon). <i>Electrocatalysis</i> , 2021 , 12, 390-402	2.7	1
34	Oxygen-Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. <i>Angewandte Chemie</i> , 2019 , 131, 1135-1140	3.6	1
33	DFT Comparison the Performance of Pd10Sn5 and Pd10Ag5 Electrocatalyst for Reduction of CO2. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5620	3.1	1
32	Distributions of volatile halocarbons and impacts of ocean acidification on their production in coastal waters of China. <i>Science of the Total Environment</i> , 2021 , 752, 141756	10.2	1

31	Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. <i>Pharmacological Research</i> , 2021 , 164, 105391	10.2	1
30	Controllable synthesis and luminescence properties of one-dimensional La2O3 and La2O3:Ln3+ (Ln = Er, Eu, Tb) nanorods with different aspect ratios. <i>Journal of Luminescence</i> , 2021 , 229, 117663	3.8	1
29	High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18313-18322	13	1
28	Submicroreactors: The Development of YolkBhell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability (Adv. Funct. Mater. 32/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870227	15.6	1
27	The Complex Crystal Structure and Abundant Local Defects of Zeolite EMM-17 Unraveled by Combined Electron Crystallography and Microscopy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24227-24233	16.4	1
26	Bacteria-based nanosystems for enhanced antitumor therapy. <i>Science China Life Sciences</i> , 2021 , 1	8.5	1
25	Phase and morphology evolution of NaGdF4:Yb,Er nanocrystals with power density-dependent upconversion fluorescence via one-step microwave-assisted solvothermal method. <i>Journal of Luminescence</i> , 2021 , 239, 118283	3.8	1
24	Electrocatalytic CO2 Reduction Activity Over Transition Metal Anchored on Nitrogen-Doped Carbon: A Density Functional Theory Investigation. <i>Catalysis Letters</i> , 2021 , 151, 2547-2559	2.8	1
23	The influence of melt status and beta-nucleation agent distribution on the crystallization of isotactic polypropylene. <i>CrystEngComm</i> , 2022 , 24, 2429-2445	3.3	1
22	Single atom and defect engineering of CuO for efficient electrochemical reduction of CO 2 to C 2 H 4. <i>SmartMat</i> , 2022 , 3, 194-205	22.8	1
21	Balancing uptake and selectivity in a copper-based metal®rganic framework for xenon and krypton separation. <i>Separation and Purification Technology</i> , 2022 , 291, 120932	8.3	1
20	Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries. <i>Energy Storage Materials</i> , 2022 , 48, 205-211	19.4	1
19	Decadal acidification in a subtropical coastal area under chronic eutrophication. <i>Environmental Pollution</i> , 2021 , 293, 118487	9.3	0
18	Effective surface passivation with 4-bromo-benzonitrile to enhance the performance of perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 17089-17098	7.1	O
17	State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes. <i>Current Opinion in Chemical Engineering</i> , 2022 , 35, 100755	5.4	О
16	A Comparative Study on C2 Hydrocarbons and Methanol Synthesis from CO Hydrogenation Catalyzed by M1/W6S8 (M = Ir and Ca) Single-Atom Catalysts. <i>Catalysis Letters</i> , 2020 , 150, 1515-1526	2.8	O
15	Numerical Investigation of Arc-Pool-Metal Vapor Behavior in GTAW with an External Magnetic Field. <i>Metals</i> , 2020 , 10, 1199	2.3	0
14	Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. <i>Angewandte Chemie</i> , 2021 , 133, 3084-3091	3.6	Ο

LIST OF PUBLICATIONS

13	Lithium- gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery. <i>Electrochimica Acta</i> , 2021 , 394, 139123	6.7	О
12	Poly(Anthraquinonyl Sulfide)/CNT Composites as High-Rate-Performance Cathodes for Nonaqueous Rechargeable Calcium-Ion Batteries <i>Advanced Science</i> , 2022 , e2200397	13.6	O
11	A Career in Catalysis: Jean-Marie M. Basset. <i>ACS Catalysis</i> ,4961-4977	13.1	0
10	Three-dimensional stacked filter (3DSF): a nonlinear filter for series images of TEM. <i>Ultramicroscopy</i> , 2022 , 240, 113560	3.1	O
9	Chemical Separation: Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations (Adv. Mater. 22/2020). <i>Advanced Materials</i> , 2020 , 32, 2070171	24	
8	Advancing Atomic-Resolution TEM of Electron Beam-Sensitive Crystalline Materials from ImpossibleIto Routine[]Microscopy and Microanalysis, 2019, 25, 1676-1677	0.5	
7	STEM Tomography and Surface Plasmon Imaging of a Au-Pd Bi-metallic Nanorod with Exotic Morphology. <i>Microscopy and Microanalysis</i> , 2014 , 20, 622-623	0.5	
6	Strain-Mediated Asymmetric Growth of Plasmonic Nanocrystals: A Monometallic Au Nanorod-Au Nanoparticle Heterodimer. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2207-2208	0.5	
5	La(OH)3 nanorods with different sizes enhanced osteogenic differentiation on mice bone marrow mesenchymal stem cells. <i>Journal of Nanoparticle Research</i> , 2021 , 23, 1	2.3	
4	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 1854-1854	15.6	
3	REktitelbild: Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets (Angew. Chem. 6/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3352-3352	3.6	
2	The Complex Crystal Structure and Abundant Local Defects of Zeolite EMM-17 Unraveled by Combined Electron Crystallography and Microscopy. <i>Angewandte Chemie</i> , 2021 , 133, 24429	3.6	
1	Control of electronic conductivity and ionic conductivity of mixed electronion conductor and their effects on lithium plating. <i>Ionics</i> ,1	2.7	