Shuiqiao Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7880112/publications.pdf

Version: 2024-02-01

		279798	265206
58	2,089	23	42
papers	citations	h-index	g-index
65	65	65	2005
65	65	65	2985
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mitochondrial regulation during male germ cell development. Cellular and Molecular Life Sciences, 2022, 79, 91.	5.4	16
2	Transcription factor-like 5 is a potential DNA- and RNA-binding protein essential for maintaining male fertility in mice. Journal of Cell Science, 2022, 135, .	2.0	7
3	WDFY1, a WD40 repeat protein, is not essential for spermatogenesis and male fertility in mice. Biochemical and Biophysical Research Communications, 2022, 596, 71-75.	2.1	2
4	METTL21A, a Non-Histone Methyltransferase, Is Dispensable for Spermatogenesis and Male Fertility in Mice. International Journal of Molecular Sciences, 2022, 23, 1942.	4.1	1
5	Retrotransposons in the Mammalian Male Germline. Sexual Development, 2022, 16, 404-422.	2.0	3
6	UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biology of Reproduction, 2022, 107, 168-182.	2.7	1
7	UHRF1 establishes crosstalk between somatic and germ cells in male reproduction. Cell Death and Disease, 2022, 13, 377.	6.3	7
8	hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells. Nature Communications, 2022, 13, .	12.8	15
9	Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cellular and Molecular Immunology, 2021, 18, 487-489.	10.5	115
10	Epigenetic Regulation of Spermatogonial Stem Cell Homeostasis: From DNA Methylation to Histone Modification. Stem Cell Reviews and Reports, 2021, 17, 562-580.	3.8	12
11	Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nature Communications, 2021, 12, 1253.	12.8	44
12	An Immunological Perspective: What Happened to Pregnant Women After Recovering From COVID-19?. Frontiers in Immunology, 2021, 12, 631044.	4.8	14
13	Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cellular and Molecular Life Sciences, 2021, 78, 4893-4905.	5.4	31
14	Dnmt2-null sperm block maternal transmission of a paramutant phenotypeâ€. Biology of Reproduction, 2021, 105, 603-612.	2.7	5
15	MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development (Cambridge), 2021, 148, .	2.5	12
16	Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
17	OTOGL, a gelforming mucin protein, is nonessential for male germ cell development and spermatogenesis in mice. Reproductive Biology and Endocrinology, 2021, 19, 95.	3.3	4
18	Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Proliferation, 2021, 54, e13086.	5.3	9

#	Article	IF	Citations
19	Lack of miR-379/miR-544 Cluster Resists High-Fat Diet-Induced Obesity and Prevents Hepatic Triglyceride Accumulation in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 720900.	3.7	7
20	AXDND1, a novel testis-enriched gene, is required for spermiogenesis and male fertility. Cell Death Discovery, 2021, 7, 348.	4.7	8
21	hnRNPU in Sertoli cells cooperates with WT1 and is essential for testicular development by modulating transcriptional factors <i>Sox8/9</i> . Theranostics, 2021, 11, 10030-10046.	10.0	16
22	Xâ€linked <i>miRâ€506</i> family miRNAs promote FMRP expression in mouse spermatogonia. EMBO Reports, 2020, 21, e49024.	4.5	12
23	Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Frontiers in Cell and Developmental Biology, 2020, 8, 593005.	3.7	23
24	The Vehicle Determines the Destination: The Significance of Seminal Plasma Factors for Male Fertility. International Journal of Molecular Sciences, 2020, 21, 8499.	4.1	14
25	Role of Selective Autophagy in Spermatogenesis and Male Fertility. Cells, 2020, 9, 2523.	4.1	31
26	GOLGA4, A Golgi matrix protein, is dispensable for spermatogenesis and male fertility in mice. Biochemical and Biophysical Research Communications, 2020, 529, 642-646.	2.1	6
27	Mitochondria Associated Germinal Structures in Spermatogenesis: piRNA Pathway Regulation and Beyond. Cells, 2020, 9, 399.	4.1	26
28	Maternal UHRF1 Is Essential for Transcription Landscapes and Repression of Repetitive Elements During the Maternal-to-Zygotic Transition. Frontiers in Cell and Developmental Biology, 2020, 8, 610773.	3.7	6
29	UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nature Communications, 2019, 10, 4705.	12.8	56
30	Overexpression of MicroRNA-10a in Germ Cells Causes Male Infertility by Targeting Rad51 in Mouse and Human. Frontiers in Physiology, 2019, 10, 765.	2.8	34
31	Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in miceâ€. Biology of Reproduction, 2019, 100, 1673-1685.	2.7	26
32	Insertion of a chimeric retrotransposon sequence in mouse Axin1 locus causes metastable kinky tail phenotype. Mobile DNA, 2019, 10, 17.	3.6	11
33	Ovol2, a zinc finger transcription factor, is dispensable for spermatogenesis in mice. Reproductive Biology and Endocrinology, 2019, 17, 98.	3.3	5
34	Identification of programmed cell death 1 and its ligand in the testicular tissue of mice. American Journal of Reproductive Immunology, 2019, 81, e13079.	1.2	5
35	MicroRNA profile comparison of testicular tissues derived from successful and unsuccessful microdissection testicular sperm extraction retrieval in non-obstructive azoospermia patients. Reproduction, Fertility and Development, 2019, 31, 671.	0.4	21
36	Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3584-3593.	7.1	79

#	Article	lF	CITATIONS
37	Testicular piRNA profile comparison between successful and unsuccessful micro-TESE retrieval in NOA patients. Journal of Assisted Reproduction and Genetics, 2018, 35, 801-808.	2.5	22
38	Maternally expressed miRâ€379/miRâ€544 cluster is dispensable for testicular development and spermatogenesis in mice. Molecular Reproduction and Development, 2018, 85, 175-177.	2.0	6
39	Enigma of Retrotransposon Biology in Mammalian Early Embryos and Embryonic Stem Cells. Stem Cells International, 2018, 2018, 1-6.	2.5	20
40	Systematic Inâ€Depth Proteomic Analysis of Mitochondriaâ€Associated Endoplasmic Reticulum Membranes in Mouse and Human Testes. Proteomics, 2018, 18, e1700478.	2.2	39
41	<i>Prps1l1</i> , a testisâ€specific gene, is dispensable for mouse spermatogenesis. Molecular Reproduction and Development, 2018, 85, 802-804.	2.0	5
42	Chemical and physical guidance of fish spermatozoa into the egg through the micropyleâ€,‡. Biology of Reproduction, 2017, 96, 780-799.	2.7	67
43	Paternal pachytene piRNAs are not required for fertilization, embryonic development and sperm-mediated epigenetic inheritance in mice. Environmental Epigenetics, 2016, 2, dvw021.	1.8	5
44	Micro <scp>RNA</scp> â€34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO Journal, 2016, 35, 2386-2398.	7.8	53
45	SpermBase: A Database for Sperm-Borne RNA Contents. Biology of Reproduction, 2016, 95, 99-99.	2.7	111
46	<i>Ubqln3</i> , a testisâ€specific gene, is dispensable for embryonic development and spermatogenesis in mice. Molecular Reproduction and Development, 2015, 82, 266-267.	2.0	7
47	A testisâ€specific gene, <i>Ubqlnl</i> , is dispensable for mouse embryonic development and spermatogenesis. Molecular Reproduction and Development, 2015, 82, 408-409.	2.0	15
48	Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development (Cambridge), 2015, 143, 635-47.	2.5	211
49	<i>Spata6</i> is required for normal assembly of the sperm connecting piece and tight head–tail conjunction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E430-9.	7.1	129
50	UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development (Cambridge), 2015, 142, 352-62.	2.5	30
51	mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biology Open, 2015, 4, 212-223.	1.2	157
52	Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Scientific Reports, 2015, 5, 9266.	3.3	44
53	Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection. PLoS ONE, 2015, 10, e0129457.	2.5	55
54	Murine Follicular Development Requires Oocyte DICER, but Not DROSHA1. Biology of Reproduction, 2014, 91, 39.	2.7	32

Shuiqiao Yuan

#	Article	IF	CITATIONS
55	Two miRNA clusters, <i>miR-34b/c</i> and <i>miR-449</i> , are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2851-7.	7.1	244
56	The cytoplasmic droplet may be indicative of sperm motility and normal spermiogenesis. Asian Journal of Andrology, 2013, 15, 799-805.	1.6	37
57	<i>Stk31</i> is dispensable for embryonic development and spermatogenesis in mice. Molecular Reproduction and Development, 2013, 80, 786-786.	2.0	9
58	Proteomic Analyses Reveal a Role of Cytoplasmic Droplets as an Energy Source during Epididymal Sperm Maturation. PLoS ONE, 2013, 8, e77466.	2.5	56