Kazuhito Naka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/787944/publications.pdf

Version: 2024-02-01

85 papers

7,172 citations

34 h-index 76 g-index

88 all docs 88 docs citations

88 times ranked 10410 citing authors

#	Article	IF	CITATIONS
1	Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Scientific Reports, 2022, 12, 704.	3.3	4
2	RUNX1 transactivates <i>BCRâ€ABL1</i> expression in Philadelphia chromosome positive acute lymphoblastic leukemia. Cancer Science, 2022, 113, 529-539.	3.9	5
3	Targeting of plasminogen activator inhibitor-1 activity promotes elimination of chronic myeloid leukemia stem cells. Haematologica, 2021, 106, 483-494.	3 . 5	17
4	KHDRBS3 promotes multiâ€drug resistance and anchorageâ€independent growth in colorectal cancer. Cancer Science, 2021, 112, 1196-1208.	3.9	17
5	New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism. International Journal of Hematology, 2021, 113, 648-655.	1.6	4
6	Role of Lysophospholipid Metabolism in Chronic Myelogenous Leukemia Stem Cells. Cancers, 2021, 13, 3434.	3.7	1
7	Statins Enhance the Molecular Response in Chronic Myeloid Leukemia when Combined with Tyrosine Kinase Inhibitors. Cancers, 2021, 13, 5543.	3.7	9
8	Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene, 2020, 39, 7265-7278.	5.9	30
9	The lysophospholipase D enzyme Gdpd3 is required to maintain chronic myelogenous leukaemia stem cells. Nature Communications, 2020, 11, 4681.	12.8	21
10	Uc.63+ contributes to gastric cancer progression through regulation of NF-kB signaling. Gastric Cancer, 2020, 23, 863-873.	5. 3	11
11	HMGCLL1 is a predictive biomarker for deep molecular response to imatinib therapy in chronic myeloid leukemia. Leukemia, 2019, 33, 1439-1450.	7.2	14
12	Regulation of Hematopoiesis and Hematological Disease by TGF-Î ² Family Signaling Molecules. Cold Spring Harbor Perspectives in Biology, 2017, 9, a027987.	5 . 5	25
13	Genetic regulation of the RUNX transcription factor family has antitumor effects. Journal of Clinical Investigation, 2017, 127, 2815-2828.	8.2	103
14	New hope for chronic myelogenous leukemia patients: dasatinib offers better efficacy with shorter treatment. Stem Cell Investigation, 2016, 3, 19-19.	3.0	0
15	Immunological Analyses of Leukemia Stem Cells. Methods in Molecular Biology, 2016, 1465, 37-45.	0.9	0
16	Novel oral transforming growth factorâ€Î² signaling inhibitor <scp>EW</scp> â€7197 eradicates <scp>CML</scp> â€initiating cells. Cancer Science, 2016, 107, 140-148.	3.9	28
17	Low dose-rate irradiation specifically affects hematopoietic stem cells. Experimental Hematology, 2016, 44, S101-S102.	0.4	0
18	A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase–Akt pathway activation. Journal of Allergy and Clinical Immunology, 2016, 138, 1170-1182.e9.	2.9	54

#	Article	IF	CITATIONS
19	Transcriptome sequencing of hematopoietic stem cells and chronic myelgenous leukemia stem cells. Genomics Data, 2016, 7, 57-59.	1.3	4
20	Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS ONE, 2016, 11, e0155558.	2.5	5
21	A new strategy for manipulating expression and activity of geminin could make it possible to regulate cell fates of HSCs. Experimental Hematology, 2015, 43, S97.	0.4	0
22	Homozygous deletions at 3p22, 5p14, 6q15, and 9p21 result in aberrant expression of tumor suppressor genes in gastric cancer. Genes Chromosomes and Cancer, 2015, 54, 142-155.	2.8	13
23	Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nature Communications, 2015, 6, 8039.	12.8	52
24	Contextâ€dependent activation of Wnt signaling by tumor suppressor <scp>RUNX</scp> 3 in gastric cancer cells. Cancer Science, 2014, 105, 418-424.	3.9	33
25	Definition of Smad3 Phosphorylation Events That Affect Malignant and Metastatic Behaviors in Breast Cancer Cells. Cancer Research, 2014, 74, 6139-6149.	0.9	33
26	Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3805-3810.	7.1	65
27	Association of a murine leukaemia stem cell gene signature based on nucleostemin promoter activity with prognosis of acute myeloid leukaemia in patients. Biochemical and Biophysical Research Communications, 2014, 450, 837-843.	2.1	4
28	Crosstalk between the Rb Pathway and AKT Signaling Forms a Quiescence-Senescence Switch. Cell Reports, 2014, 7, 194-207.	6.4	79
29	Abundant Nucleostemin Expression Supports the Undifferentiated Properties of Germ Cell Tumors. American Journal of Pathology, 2013, 183, 592-603.	3.8	7
30	B-cell linker protein expression contributes to controlling allergic and autoimmune diseases by mediating IL-10 production in regulatory B cells. Journal of Allergy and Clinical Immunology, 2013, 131, 1674-1682.e9.	2.9	76
31	Ablation of Fbxw7 Eliminates Leukemia-Initiating Cells by Preventing Quiescence. Cancer Cell, 2013, 23, 347-361.	16.8	144
32	MIP-1α/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. Journal of Experimental Medicine, 2013, 210, 2661-2673.	8. 5	52
33	TGF-Î ² Signaling in Leukemogenesis. , 2013, , 189-207.		1
34	mTORC1 Inactivation Prevents and Eradicates Acute Lymphoblastic T-Cell Leukemia. Blood, 2013, 122, 1211-1211.	1.4	0
35	Nucleostemin in Injury-Induced Liver Regeneration. Stem Cells and Development, 2012, 21, 3044-3054.	2.1	12
36	mTORC1 is essential for leukemia propagation but not stem cell self-renewal. Journal of Clinical Investigation, 2012, 122, 2114-2129.	8.2	117

#	Article	IF	Citations
37	Regulatory Role of Host IL-17 Via Control of Host Macrophage Activation Contributes to Less Acute Gvhd. Blood, 2012, 120, 4669-4669.	1.4	1
38	Molecular pathology of tumorâ€initiating cells: Lessons from Philadelphia chromosomeâ€positive leukemia. Pathology International, 2011, 61, 501-508.	1.3	6
39	Maintenance of genomic integrity in hematopoietic stem cells. International Journal of Hematology, 2011, 93, 434-439.	1.6	56
40	NKX2.2 Suppresses Self-Renewal of Glioma-Initiating Cells. Cancer Research, 2011, 71, 1135-1145.	0.9	24
41	Both Tissue-Derived and Bone Marrow-Derived Host IL-17 Producing Cells Are Required for Preventing Acute Graft-Versus-Host Disease. Blood, 2011, 118, 2970-2970.	1.4	12
42	Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cells. Cancer Science, 2010, 101, 1577-1581.	3.9	56
43	TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature, 2010, 463, 676-680.	27.8	549
44	Role of Il-17 Varies at Different Periods After Hematopoietic Stem Cell Transplantation: Protection From Acute Graft-Versus-Host Disease and Exacerbation of Chronic Graft-Versus-Host Disease Blood, 2010, 116, 3741-3741.	1.4	1
45	Cytokine-Induced Killer Cells Facilitate Immune Reconstitution After Allogeneic BMT In Mice Blood, 2010, 116, 3719-3719.	1.4	0
46	Molecular Mechanism Regulating Foxo In Leukemia Initiating Cells of Chronic Myeloid Leukemia Blood, 2010, 116, 3391-3391.	1.4	0
47	Identification of tumor-initiating cells in a highly aggressive brain tumor using promoter activity of nucleostemin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17163-17168.	7.1	79
48	Identification of Stem Cells During Prepubertal Spermatogenesis via Monitoring of Nucleostemin Promoter Activity. Stem Cells, 2008, 26, 3237-3246.	3.2	35
49	Activated macrophages promote Wnt signalling through tumour necrosis factor- $\hat{l}\pm$ in gastric tumour cells. EMBO Journal, 2008, 27, 1671-1681.	7.8	252
50	Regulation of Reactive Oxygen Species and Genomic Stability in Hematopoietic Stem Cells. Antioxidants and Redox Signaling, 2008, 10, 1883-1894.	5.4	225
51	The Molecular Bases of the Self-Renewal and Differentiation of Leukemic Stem Cells. Current Cancer Therapy Reviews, 2008, 4, 178-187.	0.3	0
52	Donor Bone Marrow Derived IL-17 Expressing Cells Exacerbate Chronic Graft-Versus-Host Disease in a Murine Bone Marrow Transplantation Blood, 2008, 112, 2345-2345.	1.4	0
53	Tandem Repeats of Lactoferrinâ€Derived Antiâ€Hepatitis C Virus Peptide Enhance Antiviral Activity in Cultured Human Hepatocytes. Microbiology and Immunology, 2007, 51, 117-125.	1.4	21
54	Regulation of Reactive Oxygen Species by <i>Atm</i> Is Essential for Proper Response to DNA Double-Strand Breaks in Lymphocytes. Journal of Immunology, 2007, 178, 103-110.	0.8	109

#	Article	IF	Citations
55	Cell culture-adaptive NS3 mutations required for the robust replication of genome-length hepatitis C virus RNA. Virus Research, 2007, 125, 88-97.	2.2	28
56	Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool. Cell Stem Cell, 2007, 1, 101-112.	11.1	780
57	Regulation of the self-renewal ability of tissue stem cells by tumor-related genes. Cancer Biomarkers, 2007, 3, 193-201.	1.7	10
58	Epigenetic silencing of interferon-inducible genes is implicated in interferon resistance of hepatitis C virus replicon-harboring cells. Journal of Hepatology, 2006, 44, 869-878.	3.7	25
59	Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 2006, 12, 446-451.	30.7	1,196
60	Hepatitis C virus NS5B delays cell cycle progression by inducing interferon- $\hat{l}^2\hat{A}$ via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology, 2006, 346, 348-362.	2.4	47
61	Different anti-HCV profiles of statins and their potential for combination therapy with interferon. Hepatology, 2006, 44, 117-125.	7.3	294
62	G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunology, Immunotherapy, 2005, 54, 729-740.	4.2	87
63	Genetic variation and dynamics of hepatitis C virus replicons in long-term cell culture. Journal of General Virology, 2005, 86, 645-656.	2.9	30
64	cDNA microarray analysis of lactoferrin expression in non-neoplastic human hepatocyte PH5CH8 cells. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 73-80.	2.4	6
65	Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochemical and Biophysical Research Communications, 2005, 329, 1350-1359.	2.1	144
66	Mizoribine inhibits hepatitis C virus RNA replication: Effect of combination with interferon-α. Biochemical and Biophysical Research Communications, 2005, 330, 871-879.	2.1	57
67	Hepatitis C virus proteins exhibit conflicting effects on the interferon system in human hepatocyte cells. Biochemical and Biophysical Research Communications, 2005, 336, 458-468.	2.1	17
68	cDNA microarray analysis to compare HCV subgenomic replicon cells with their cured cells. Virus Research, 2005, 107, 73-81.	2.2	15
69	Interferon resistance of hepatitis C virus replicon-harbouring cells is caused by functional disruption of type I interferon receptors. Journal of General Virology, 2005, 86, 2787-2792.	2.9	26
70	Stress-induced Premature Senescence in hTERT-expressing Ataxia Telangiectasia Fibroblasts. Journal of Biological Chemistry, 2004, 279, 2030-2037.	3.4	74
71	Expression of <i>POT1</i> is Associated with Tumor Stage and Telomere Length in Gastric Carcinoma. Cancer Research, 2004, 64, 523-529.	0.9	102
72	DNA damage tumor suppressor genes and genomic instability. Current Opinion in Genetics and Development, 2004, 14, 11-16.	3.3	215

#	Article	IF	CITATIONS
73	Establishment of hepatitis C virus replicon cell lines possessing interferon-resistant phenotype. Biochemical and Biophysical Research Communications, 2004, 323, 299-309.	2.1	28
74	Establishment of a hepatitis C virus subgenomic replicon derived from human hepatocytes infected in vitro. Biochemical and Biophysical Research Communications, 2003, 306, 756-766.	2.1	82
75	Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO Journal, 2002, 21, 5195-5205.	7.8	399
76	Recruitment of NBS1 into PML oncogenic domains via interaction with SP100 protein. Biochemical and Biophysical Research Communications, 2002, 299, 863-871.	2.1	28
77	DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biology, 2002, 4, 993-997.	10.3	601
78	Overexpression of Retinoic Acid Receptor \hat{l}^2 Induces Growth Arrest and Apoptosis in Oral Cancer Cell Lines. Japanese Journal of Cancer Research, 2001, 92, 42-50.	1.7	62
79	Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines. International Journal of Cancer, 2000, 88, 992-997.	5.1	118
80	Effect of 9-cis-retinoic acid on oral squamous cell carcinoma cell lines. Cancer Letters, 2000, 151, 199-208.	7.2	28
81	Immunohistochemical Detection of Human Telomerase Reverse Transcriptase in Normal Mucosa and Precancerous Lesions of the Stomach. Japanese Journal of Cancer Research, 1999, 90, 589-595.	1.7	44
82	Expression of the E2F family in human gastrointestinal carcinomas. International Journal of Cancer, 1999, 81, 535-538.	5.1	97
83	Effect of Antisense Human Telomerase RNA Transfection on the Growth of Human Gastric Cancer Cell Lines. Biochemical and Biophysical Research Communications, 1999, 255, 753-758.	2.1	34
84	Expression of Cell-Cycle-Regulating Transcription Factor E2F-1 in Colorectal Carcinomas. Pathobiology, 1999, 67, 174-179.	3.8	17
85	Enantioselective Synthesis of Functionalized Cyclopentenone and Alkylidenecyclopentane Derivatives from an Acyclic Bisallylic Diol Framework. Synlett, 1992, 1992, 241-242.	1.8	9