Acrisio Aguiar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7879304/publications.pdf

Version: 2024-02-01

840776 610901 30 606 11 24 citations h-index g-index papers 30 30 30 679 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Raman evidence for pressure-induced formation of diamondene. Nature Communications, 2017, 8, 96.	12.8	132
2	Pressure-Induced Collapse in Double-Walled Carbon Nanotubes: Chemical and Mechanical Screening Effects. Journal of Physical Chemistry C, 2011, 115, 5378-5384.	3.1	79
3	Effects of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes. Carbon, 2018, 133, 446-456.	10.3	47
4	Linear Carbon Chains under High-Pressure Conditions. Journal of Physical Chemistry C, 2015, 119, 10669-10676.	3.1	46
5	Structural and Phonon Properties of Bundled Single- and Double-Wall Carbon Nanotubes Under Pressure. Journal of Physical Chemistry C, 2012, 116, 22637-22645.	3.1	41
6	Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study. Journal of Physical Chemistry C, 2014, 118, 8153-8158.	3.1	32
7	From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes. Carbon, 2019, 141, 568-579.	10.3	31
8	Elastic properties of graphyne-based nanotubes. Computational Materials Science, 2019, 170, 109153.	3.0	25
9	Effects of intercalation and inhomogeneous filling on the collapse pressure of double-wall carbon nanotubes. Physical Review B, 2012, 86, .	3.2	20
10	Benzonitrile Adsorption on Fe-Doped Carbon Nanostructures. Journal of Physical Chemistry C, 2010, 114, 10790-10795.	3.1	18
11	Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane. Chemical Physics, 2021, 542, 111052.	1.9	16
12	Pressure-induced phase transition and fracture in $\hat{l}\pm$ -MoO3 nanoribbons. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 47-53.	3.9	12
13	Raman resonance tuning of quaterthiophene in filled carbon nanotubes at high pressures. Carbon, 2021, 173, 163-173.	10.3	12
14	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	2.8	10
15	Mechanical Properties of Pentagraphene-based Nanotubes: A Molecular Dynamics Study. MRS Advances, 2018, 3, 97-102.	0.9	10
16	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 10609-10619.	3.1	8
17	Electronic and structural properties of vacancy endowed BCN heterostructures. Chemical Physics Letters, 2019, 724, 103-109.	2.6	7
18	Atomistic computational modeling of temperature effects in fracture toughness and degradation of penta-graphene monolayer. Chemical Physics Letters, 2021, 778, 138793.	2.6	7

#	Article	IF	CITATIONS
19	Mechanical Properties of Phagraphene Membranes: A Fully Atomistic Molecular Dynamics Investigation. MRS Advances, 2018, 3, 67-72.	0.9	6
20	On the elastic properties of single-walled phagraphene nanotubes. Chemical Physics Letters, 2020, 756, 137830.	2.6	6
21	Mechanical properties of single-walled penta-graphene-based nanotubes: A DFT and Classical molecular dynamics study. Chemical Physics, 2021, 547, 111187.	1.9	6
22	Non-covalent interaction of benzonitrile with single-walled carbon nanotubes. Journal of Nanoparticle Research, 2009, 11, 2163-2170.	1.9	5
23	Temperature Effects on the Fracture Dynamics and Elastic Properties of Popgraphene Membranes. ChemPhysChem, 2020, 21, 1918-1924.	2.1	5
24	On the Mechanical Properties of Popgrapheneâ€Based Nanotubes: a Reactive Molecular Dynamics Study. ChemPhysChem, 2021, 22, 701-707.	2.1	5
25	Carbon Nanotubes Under High Pressure Probed by Resonance Raman Scattering. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 435-446.	0.3	4
26	Structural and electronic properties of defective AlN/GaN hybrid nanostructures. Computational Materials Science, 2020, 183, 109860.	3.0	4
27	Pressure-induced structural transformations on linear carbon chains encapsulated in carbon nanotubes: A potential route for obtaining longer chains and ultra-hard composites. Carbon, 2022, 196, 20-28.	10.3	4
28	Electronic, transport, and magnetic properties of punctured carbon nanotubes. Physical Review B, 2016, 94, .	3.2	3
29	High Pressure in Boron Nitride Nanotubes for Kirigami Nanoribbon Elaboration. Journal of Physical Chemistry C, 2021, 125, 11440-11453.	3.1	3
30	Flat-to-Flat Polymerization of Single-Walled Carbon Nanotubes under High Pressure Mediated by Carbon Chain Encapsulation. Journal of Physical Chemistry C, 2021, 125, 12857-12869.	3.1	2