Vipul Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7879167/publications.pdf Version: 2024-02-01

VIDIII CIIDTA

#	Article	IF	CITATIONS
1	3D printed metal columns for capillary liquid chromatography. Analyst, The, 2014, 139, 6343-6347.	3.5	87
2	Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements. Journal of Chemical Education, 2014, 91, 232-238.	2.3	65
3	3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography. Analytica Chimica Acta, 2016, 910, 84-94.	5.4	64
4	Miniature and fully portable gradient capillary liquid chromatograph. Analytica Chimica Acta, 2020, 1101, 199-210.	5.4	45
5	Stable, microfabricated thin layer chromatography plates without volume distortion on patterned, carbon and Al2O3-primed carbon nanotube forests. Journal of Chromatography A, 2012, 1257, 195-203.	3.7	42
6	Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Analytical Chemistry, 2018, 90, 1186-1194.	6.5	42
7	Hydrogen Plasma Treatment of Silicon Dioxide for Improved Silane Deposition. Langmuir, 2013, 29, 3604-3609.	3.5	41
8	A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly. International Journal of Pharmaceutics, 2015, 491, 58-68.	5.2	39
9	Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients: Experiments and multi-scale modeling. Asian Journal of Pharmaceutical Sciences, 2016, 11, 603-617.	9.1	31
10	A new 3D printed radial flow-cell for chemiluminescence detection: Application in ion chromatographic determination of hydrogen peroxide in urine and coffee extracts. Analytica Chimica Acta, 2018, 1005, 81-92.	5.4	31
11	3D Printed Liquid Cooling Interface for a Deep-UV-LED-Based Flow-Through Absorbance Detector. Analytical Chemistry, 2019, 91, 8795-8800.	6.5	24
12	Ion chromatographic determination of hydrazine in excess ammonia for monitoring graphene oxide reduction reaction. Talanta, 2019, 205, 120081.	5.5	15
13	Miniature Multiwavelength Deep UV-LED-Based Absorption Detection System for Capillary LC. Analytical Chemistry, 2020, 92, 13688-13693.	6.5	14
14	Small-Footprint, Field-Deployable LC/MS System for On-Site Analysis of Per- and Polyfluoroalkyl Substances in Soil. Analytical Chemistry, 2021, 93, 12032-12040.	6.5	13
15	Ultraviolet absorbance detector based on a high output power 235 nm surface mounted device-type light-emitting diode. Journal of Chromatography A, 2020, 1631, 461540.	3.7	12
16	Functionalization/passivation of porous graphitic carbon with di-tert-amylperoxide. Journal of Chromatography A, 2011, 1218, 8362-8369.	3.7	5
17	PolyJet printed high aspect ratio three-dimensional bifurcating microfluidic flow distributor and its application in solid-phase extraction. Analytica Chimica Acta, 2021, 1168, 338624.	5.4	4
18	Fast pulsed amperometric waveform for miniaturised flow-through electrochemical detection: Application in monitoring graphene oxide reduction. Electrochimica Acta, 2019, 328, 135087.	5.2	2

#	Article	IF	CITATIONS
19	Self-termination in the gas-phase layer-by-layer growth of an aza silane and water on planar silicon and nylon substrates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 061803.	1.2	1
20	Data and device protection: A ToF-SIMS, wetting, and XPS study of an Apple iPod nano. Surface and Interface Analysis, 2014, 46, 106-108.	1.8	1
21	Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During <1>In Situ 1 Urea-Formaldehyde Polymerization. Journal of Nanoscience and Nanotechnology, 2015, 15, 10022-10036.	0.9	1