List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7879122/publications.pdf Version: 2024-02-01

ΓΕΡΝΑΝΠΟ ΜΑΥΑ

#	Article	IF	CITATIONS
1	Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC - Trends in Analytical Chemistry, 2017, 90, 142-152.	5.8	249
2	Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. Journal of Chromatography A, 2012, 1261, 121-128.	1.8	115
3	Lab in a syringe: fully automated dispersive liquid–liquid microextraction with integrated spectrophotometric detection. Analytical and Bioanalytical Chemistry, 2012, 404, 909-917.	1.9	90
4	A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of looseÂchains using external crosslinkers and application of theseÂmonolithicÂcolumns forÂseparation of small molecules. Polymer, 2014, 55, 340-346.	1.8	84
5	Automated in-syringe dispersive liquid-liquid microextraction. TrAC - Trends in Analytical Chemistry, 2014, 59, 1-8.	5.8	75
6	Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal–Organic Frameworks. Analytical Chemistry, 2015, 87, 7545-7549.	3.2	75
7	Completely automated in-syringe dispersive liquid–liquid microextraction using solvents lighter than water. Analytical and Bioanalytical Chemistry, 2012, 402, 1383-1388.	1.9	70
8	Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 2012, 99, 349-356.	2.9	67
9	Improving the chemiluminescence-based determination of sulphide in complex environmental samples by using a new, automated multi-syringe flow injection analysis system coupled to a gas diffusion unit. Analytica Chimica Acta, 2007, 601, 87-94.	2.6	66
10	Growth of a Highly Porous Coordination Polymer on a Macroporous Polymer Monolith Support for Enhanced Immobilized Metal Ion Affinity Chromatographic Enrichment of Phosphopeptides. Advanced Functional Materials, 2014, 24, 5790-5797.	7.8	61
11	Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. Journal of Chromatography A, 2017, 1488, 1-9.	1.8	61
12	Pollution Pathways of Pharmaceutical Residues in the Aquatic Environment on the Island of Mallorca, Spain. Archives of Environmental Contamination and Toxicology, 2013, 65, 56-66.	2.1	59
13	UiO-66 derived etched carbon/polymer membranes: High-performance supports for the extraction of organic pollutants from water. Chemical Engineering Journal, 2018, 346, 85-93.	6.6	56
14	Metal–organic framework mixed-matrix coatings on 3D printed devices. Applied Materials Today, 2019, 16, 21-27.	2.3	54
15	Recent advances in flow-based automated solid-phase extraction. TrAC - Trends in Analytical Chemistry, 2018, 108, 370-380.	5.8	53
16	Interfacing on-line solid phase extraction with monolithic column multisyringe chromatography and chemiluminescence detection: An effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta, 2010, 80, 1333-1340.	2.9	52
17	3D printed device for the automated preconcentration and determination of chromium (VI). Talanta, 2018, 184, 15-22.	2.9	47
18	Porogens and porogen selection in the preparation of porous polymer monoliths. Journal of Separation Science, 2020, 43, 56-69.	1.3	46

#	Article	IF	CITATIONS
19	Nanoporous Polymers from Cross-Linked Polymer Precursors via <i>tert</i> -Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chemistry of Materials, 2015, 27, 7388-7394.	3.2	44
20	Improved spectrophotometric determination of paraquat in drinking waters exploiting a Multisyringe liquid core waveguide system. Talanta, 2011, 85, 588-595.	2.9	43
21	Submicrometric Magnetic Nanoporous Carbons Derived from Metal–Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction. Analytical Chemistry, 2016, 88, 6990-6995.	3.2	43
22	Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking. Journal of Chromatography A, 2013, 1317, 32-38.	1.8	41
23	Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages. Food Chemistry, 2016, 212, 759-767.	4.2	41
24	3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta, 2017, 175, 463-469.	2.9	39
25	Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta, 2017, 164, 348-354.	2.9	38
26	Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta, 2018, 189, 241-248.	2.9	38
27	Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples. Mikrochimica Acta, 2011, 173, 33-41.	2.5	36
28	Nanoparticle-Directed Metal–Organic Framework/Porous Organic Polymer Monolithic Supports for Flow-Based Applications. ACS Applied Materials & Interfaces, 2017, 9, 1728-1736.	4.0	35
29	Zeolitic imidazolate framework dispersions for the fast and highly efficient extraction of organic micropollutants. RSC Advances, 2015, 5, 28203-28210.	1.7	34
30	3D Printing in analytical sample preparation. Journal of Separation Science, 2020, 43, 1854-1866.	1.3	34
31	Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. Journal of Environmental Chemical Engineering, 2016, 4, 4062-4071.	3.3	33
32	Emerging materials for sample preparation. Journal of Separation Science, 2018, 41, 262-287.	1.3	33
33	Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation. Chromatographia, 2019, 82, 361-375.	0.7	33
34	Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total indices. Talanta, 2010, 81, 1-8.	2.9	32
35	Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX. Mikrochimica Acta, 2019, 186, 425.	2.5	32
36	A three-dimensional printed electromembrane extraction device for capillary electrophoresis. Journal of Chromatography A, 2019, 1595, 215-220.	1.8	32

#	Article	IF	CITATIONS
37	In-syringe dispersive μ-SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Analytical and Bioanalytical Chemistry, 2017, 409, 225-234.	1.9	30
38	Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. Journal of Chromatography A, 2018, 1567, 55-63.	1.8	28
39	UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol–gel method during MCPA degradation. Environmental Science and Pollution Research, 2017, 24, 12673-12682.	2.7	25
40	Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. Mikrochimica Acta, 2012, 179, 91-98.	2.5	24
41	Automated growth of metal–organic framework coatings on flow-through functional supports. Chemical Communications, 2015, 51, 8169-8172.	2.2	24
42	In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers. Journal of Chromatography A, 2016, 1453, 1-9.	1.8	24
43	Automated solid-phase extraction of organic pollutants using melamine–formaldehyde polymer-derived carbon foams. RSC Advances, 2016, 6, 48558-48565.	1.7	24
44	Metal Oxide Assisted Preparation of Core–Shell Beads with Dense Metal–Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants. Chemistry - A European Journal, 2016, 22, 11770-11777.	1.7	24
45	Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars. Journal of Chromatography A, 2016, 1445, 10-18.	1.8	23
46	Spectrophotometric determination of chloride in waters using a multisyringe flow injection system. Talanta, 2008, 74, 1534-1538.	2.9	22
47	Multisyringe flow injection analysis hyphenated with liquid core waveguides for the development of cleaner spectroscopic analytical methods: improved determination of chloride in waters. Analytical and Bioanalytical Chemistry, 2009, 394, 1577-1583.	1.9	19
48	Newly Developed Poly(Allyl Glycidyl Ether/Divinyl Benzene) Polymer for Phosphopeptides Enrichment and Desalting of Biofluids. ACS Applied Materials & Interfaces, 2014, 6, 3536-3545.	4.0	18
49	Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. Polymer, 2015, 59, 42-48.	1.8	18
50	Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate. Photochemical and Photobiological Sciences, 2019, 18, 863-870.	1.6	18
51	Recent strategies to enhance the performance of polymer monoliths for analytical separations. Journal of Separation Science, 2019, 42, 1564-1576.	1.3	18
52	Automated solidâ€phase extraction of phenolic acids using layered double hydroxide–alumina–polymer disks. Journal of Separation Science, 2018, 41, 2012-2019.	1.3	17
53	Direct photoimmobilization of extraction disks on "green state―3D printed devices. Talanta, 2019, 202, 67-73.	2.9	16
54	Hyperporous carbon-coated 3D printed devices. Applied Materials Today, 2019, 14, 29-34.	2.3	16

#	Article	IF	CITATIONS
55	Synthesis of Cr ³⁺ -doped TiO ₂ nanoparticles: characterization and evaluation of their visible photocatalytic performance and stability. Environmental Technology (United) Tj ETQq1 1 0.7843	1.4 ng:18T /0	Dve do ck 10 T
56	In-situ growth of metal-organic frameworks in a reactive 3D printable material. Applied Materials Today, 2021, 22, 100930.	2.3	15
57	Functional Materials for DLP-SLA 3D Printing Using Thiol–Acrylate Chemistry: Resin Design and Postprint Applications. ACS Applied Polymer Materials, 2022, 4, 3896-3907.	2.0	15
58	Completely Automated System for Determining Halogenated Organic Compounds by Multisyringe Flow Injection Analysis. Analytical Chemistry, 2008, 80, 5799-5805.	3.2	14
59	Multisyringe Flow Injection Technique for Development of Green Spectroscopic Analytical Methodologies. Spectroscopy Letters, 2009, 42, 312-319.	0.5	14
60	Spectrophotometric determination of bromide in water using the multisyringe flow injection analysis technique coupled to a gas-diffusion unit. Analytical Methods, 2015, 7, 4202-4208.	1.3	14
61	Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis. Analytica Chimica Acta, 2021, 1151, 238101.	2.6	13
62	Possibilities and limitations of the sequential injection chromatography technique for the determination of anticoccidial agents in water, pharmaceutical formulations and feed. Microchemical Journal, 2011, 98, 190-199.	2.3	12
63	Flow system for the automatic screening of the effect of phenolic compounds on the luminol–hydrogen peroxide–peroxidase chemiluminescence system. Luminescence, 2011, 26, 571-578.	1.5	11
64	Rapid Additive Manufacturing of 3D Geometric Structures via Dual-Wavelength Polymerization. ACS Macro Letters, 2020, 9, 1409-1414.	2.3	10
65	Automatic flow kinetic-catalytic methods. TrAC - Trends in Analytical Chemistry, 2016, 85, 33-45.	5.8	8
66	Nanoparticle@Metalâ€Organic Frameworks as a Template for Hierarchical Porous Carbon Sponges. Chemistry - A European Journal, 2018, 24, 13450-13456.	1.7	6
67	Miniaturized 3D printed solid-phase extraction cartridges with integrated porous frits. Analytica Chimica Acta, 2022, 1208, 339790.	2.6	6
68	Flow-based determination of lead exploiting in-syringe dispersive liquid-liquid micro-extraction in xylene and integrated spectrophotometric detection. Talanta, 2022, 247, 123528.	2.9	6
69	Kinetic-photometric monitoring of the formation of MnO2 nanoparticles and their application to the determination of iodide. Mikrochimica Acta, 2016, 183, 3127-3134.	2.5	5
70	Zeolitic imidazolate frameworks in analytical sample preparation. Journal of Separation Science, 2021, 44, 1203-1219.	1.3	5
71	Recent trends on the implementation of reticular materials in columnâ€centered separations. Journal of Separation Science, 2022, 45, 1411-1424.	1.3	5
72	Biphasic Magnetic Levitation to Detect Organic Pollutants on Microplastics. Analytical Chemistry, 2022, 94, 9033-9039.	3.2	5

#	Article	IF	CITATIONS
73	ORGANICS ADSORPTION ON NOVEL AMORPHOUS SILICA AND SILICA XEROGELS: MICROCOLUMN RAPID BREAKTHROUGH TEST COUPLED WITH SEQUENTIAL INJECTION ANALYSIS. Journal of Porous Media, 2019, 22, 1001-1014.	1.0	3
74	Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides. Journal of Visualized Experiments, 2015, , e52926.	0.2	2
75	Continuous-Flow Extraction. , 2020, , 745-781.		1
76	Kinetic Methods: Principles, Applications, and Instrumentation. , 2018, , .		0
77	Frontispiece: Nanoparticle@Metal-Organic Frameworks as a Template for Hierarchical Porous Carbon Sponges. Chemistry - A European Journal, 2018, 24, .	1.7	0