Yingzhou Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7878962/publications.pdf

Version: 2024-02-01

98 papers

3,688 citations

172457 29 h-index 59 g-index

98 all docs 98 docs citations 98 times ranked 4550 citing authors

#	Article	IF	CITATIONS
1	Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nature Communications, 2017, 8, 1304.	12.8	287
2	Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticleâ ⁻ Nanowire Systems. Nano Letters, 2008, 8, 2497-2502.	9.1	268
3	Branched Silver Nanowires as Controllable Plasmon Routers. Nano Letters, 2010, 10, 1950-1954.	9.1	264
4	Multichannelâ€Improved Chargeâ€Carrier Dynamics in Wellâ€Designed Heteroâ€nanostructural Plasmonic Photocatalysts toward Highly Efficient Solarâ€toâ€Fuels Conversion. Advanced Materials, 2015, 27, 5906-5914.	21.0	239
5	Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light: Science and Applications, 2014, 3, e199-e199.	16.6	190
6	The pH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to <i>p</i> , <i>p</i> ,62-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. Journal of Physical Chemistry C, 2011, 115, 9629-9636.	3.1	149
7	Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides. Nano Letters, 2010, 10, 1831-1835.	9.1	144
8	Directional Light Emission from Propagating Surface Plasmons of Silver Nanowires. Nano Letters, 2009, 9, 4383-4386.	9.1	139
9	Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. ACS Nano, 2016, 10, 8104-8112.	14.6	131
10	Controlled Synthesis of Uniform Silver Nanospheres. Journal of Physical Chemistry C, 2010, 114, 7427-7431.	3.1	116
11	Can <i>p</i> , <i>p</i> , <i>p</i> . <i>p</i> . <i>i>a€²-Dimercaptoazobisbenzene Be Produced from <i i="" p<="">. p</i>. Aminothiophenol by Surface Photochemistry Reaction in the Junctions of a Ag Nanoparticleâ Moleculeâ Ag (or Au) Film?. Journal of Physical Chemistry C, 2010, 114, 18263-18269.</i>	3.1	114
12	Low-frequency tunable acoustic absorber based on split tube resonators. Applied Physics Letters, 2016, 109, .	3.3	103
13	High-efficiency ventilated metamaterial absorber at low frequency. Applied Physics Letters, 2018, 112, .	3.3	87
14	Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 2013, 5, 6985.	5.6	78
15	Surfactant-Promoted Reductive Synthesis of Shape-Controlled Gold Nanostructures. Crystal Growth and Design, 2009, 9, 858-862.	3.0	59
16	Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows. Extreme Mechanics Letters, 2020, 39, 100786.	4.1	58
17	Su-Schrieffer-Heeger model inspired acoustic interface states and edge states. Applied Physics Letters, 2018, 113, .	3.3	55
18	Coloring fluorescence emission with silver nanowires. Applied Physics Letters, 2010, 96, .	3.3	50

#	Article	IF	Citations
19	Plasmon-driven surface catalysis in hybridized plasmonic gap modes. Scientific Reports, 2015, 4, 7087.	3.3	49
20	Electromagnetic field redistribution in hybridized plasmonic particle-film system. Applied Physics Letters, 2013, 102, 153108.	3.3	48
21	A Mobile and Selfâ€Powered Microâ€Flow Pump Based on Triboelectricity Driven Electroosmosis. Advanced Materials, 2021, 33, e2102765.	21.0	48
22	Remote Excitation of Surface-Enhanced Raman Scattering on Single Au Nanowire with Quasi-Spherical Termini. Journal of Physical Chemistry C, 2011, 115, 3558-3561.	3.1	44
23	Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117113.	3.9	44
24	Local and Remote Chargeâ€Transferâ€Enhanced Raman Scattering on Oneâ€Dimensional Transitionâ€Metal Oxides. Chemistry - an Asian Journal, 2010, 5, 1824-1829.	3.3	42
25	Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles. Nanoscale, 2016, 8, 3720-3728.	5.6	39
26	Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality. Scientific Reports, 2015, 5, 16069.	3.3	37
27	Electrospinning Fabricating Au/TiO2 Network-like Nanofibers as Visible Light Activated Photocatalyst. Scientific Reports, 2019, 9, 8008.	3.3	36
28	Type-II Dirac Photons at Metasurfaces. Physical Review Letters, 2018, 121, 024301.	7.8	34
29	Manually tunable ventilated metamaterial absorbers. Applied Physics Letters, 2021, 118, .	3.3	31
30	Acoustic absorbers at low frequency based on split-tube metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2361-2366.	2.1	30
31	Designing topological interface states in phononic crystals based on the full phase diagrams. New Journal of Physics, 2018, 20, 073032.	2.9	29
32	Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules. Nanomaterials, 2017, 7, 210.	4.1	27
33	Plasmonic photothermal film for defogging and anti-icing/deicing on PTFE. Journal of Alloys and Compounds, 2021, 866, 158827.	5 . 5	25
34	Metal Nanoparticle–Nanowire Assisted SERS on Film. Journal of Physical Chemistry C, 2015, 119, 19376-19381.	3.1	24
35	Electromagnetic field redistribution in coupled plasmonic nanoparticle dimer-dielectric substrate system. Chemical Physics Letters, 2015, 619, 139-143.	2.6	21
36	Heterodimer Nanostructures Induced Energy Focusing on Metal Film. Journal of Physical Chemistry C, 2016, 120, 7778-7784.	3.1	21

#	Article	IF	CITATIONS
37	Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays. Biosensors and Bioelectronics, 2016, 77, 385-392.	10.1	21
38	Suppression of coffee-ring effect <i>via</i> periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering. Nanoscale, 2019, 11, 20534-20545.	5.6	21
39	pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol. Science China Chemistry, 2012, 55, 2567-2572.	8.2	20
40	A Simple Laser Ablation-Assisted Method for Fabrication of Superhydrophobic SERS Substrate on Teflon Film. Nanoscale Research Letters, 2018, 13, 244.	5.7	20
41	Interlayer Topological Transport and Devices Based on Layer Pseudospins in Photonic Valleyâ€Hall Phases. Advanced Optical Materials, 2019, 7, 1900872.	7. 3	19
42	Deterministic Scheme for Two-Dimensional Type-II Dirac Points and Experimental Realization in Acoustics. Physical Review Letters, 2020, 124, 075501.	7.8	19
43	Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles. Analytical Chemistry, 2021, 93, 13219-13225.	6.5	19
44	Application of Self-Assembled Raman Spectrum-Enhanced Substrate in Detection of Dissolved Furfural in Insulating Oil. Nanomaterials, 2019, 9, 17.	4.1	18
45	Coherent Enhancement of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent State of Dual-Path-Excited Remote SERS. ACS Applied Materials & Coherent SERS. ACS Applied Ma	8.0	18
46	Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes. Scientific Reports, 2017, 7, 11151.	3.3	17
47	Drop impacting on a surface with adjustable wettability based on the dielectrowetting effect. Physics of Fluids, 2020, 32, .	4.0	17
48	Gold crescent nanodisk array for nanoantenna-enhanced sensing in subwavelength areas. Applied Optics, 2014, 53, 7236.	2.1	16
49	Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection. Nano Energy, 2022, 98, 107239.	16.0	16
50	Substrate influence on the polarization dependence of SERS in crossed metal nanowires. Journal of Materials Chemistry C, 2017, 5, 7028-7034.	5.5	15
51	Hollow Au–Ag Alloy Nanorices and Their Optical Properties. Nanomaterials, 2017, 7, 255.	4.1	14
52	A metasurface with bidirectional hyperbolic surface modes and position-sensing applications. NPG Asia Materials, 2018, 10, 417-428.	7.9	13
53	Organic Molecule Detection Based on SERS in Microfluidics. Scientific Reports, 2019, 9, 17634.	3.3	13
54	Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection. Analytical Chemistry, 2021, 93, 10672-10678.	6.5	13

#	Article	IF	CITATIONS
55	Relaxation of liquid bridge after droplets coalescence. AIP Advances, 2016, 6, 115115.	1.3	12
56	Nanowire assisted repeatable DEP–SERS detection in microfluidics. Nanotechnology, 2019, 30, 475202.	2.6	12
57	On-chip 3D SERS materials produced by self-assemble of copper microparticle and galvanic replacement reaction. Applied Optics, 2019, 58, 4720.	1.8	12
58	Strong up-conversion luminescence of rare-earth doped oxide films enhanced by gap modes on ZnO nanowires. Nanoscale, 2018, 10, 726-732.	5.6	11
59	Material influence on hot spot distribution in the nanoparticle heterodimer on film. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 98, 1-5.	2.7	10
60	Screening the Ion Compositions on Crystal Morphology Transitions by a Microfluidic Chip with a Well-Defined Concentration Gradient. Crystal Growth and Design, 2020, 20, 6877-6887.	3.0	10
61	Microdroplet extraction assisted ultrasensitive Raman detection in complex oil. Lab on A Chip, 2021, 21, 2217-2222.	6.0	9
62	Subwavelength topological edge states based on localized spoof surface plasmonic metaparticle arrays. Optics Express, 2019, 27, 14407.	3.4	9
63	Shape-Controlled Synthesis of Pt Nanopeanuts. Scientific Reports, 2016, 6, 31404.	3.3	8
64	Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems. Scientific Reports, 2015, 5, 17223.	3.3	7
65	Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film. Journal Physics D: Applied Physics, 2016, 49, 425301.	2.8	7
66	Effects of substrate and polarization on plasmon driven surface catalysis in nanowire-film hybrid system. Superlattices and Microstructures, 2016, 100, 886-891.	3.1	7
67	Plasmonic nano-tweezer based on square nanoplate tetramers. Applied Optics, 2018, 57, 5328.	1.8	7
68	Automatically Adaptive Ventilated Metamaterial Absorber for Environment with Varying Noises. Advanced Materials Technologies, 2021, 6, 2100668.	5.8	7
69	Ultrasonic-Assisted Synthesis of Au Nanobelts and Nanowires. Journal of Nanoscience and Nanotechnology, 2010, 10, 7515-7518.	0.9	6
70	Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser. Journal of Applied Physics, 2015, 117, 023106.	2.5	6
71	Selective plasmon driven surface catalysis in metal triangular nanoplate-molecule-film sandwich structure. Chemical Physics Letters, 2015, 639, 47-51.	2.6	6
72	SERS polarization dependence of Ag nanorice dimer on metal and dielectric film. Chemical Physics Letters, 2017, 684, 373-377.	2.6	6

#	Article	IF	CITATIONS
73	Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System. Nanoscale Research Letters, 2018, 13, 194.	5.7	6
74	Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings. Chinese Physics Letters, 2014, 31, 067803.	3.3	5
75	Drop impacting on a single layer of particles: Evolution of ring without particles. Physics of Fluids, 2019, 31, 047107.	4.0	5
76	Optoplasmonic film for SERS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119698.	3.9	5
77	Surface evolution of manganese chloride aqueous droplets resulting in self-suppressed evaporation. Scientific Reports, 2015, 5, 13322.	3.3	4
78	Plasmon-driven surface catalysis on photochemically deposited-based SERS substrates. Applied Optics, 2016, 55, 8468.	2.1	4
79	Ascertaining Plasmonic Hot Electrons Generation from Plasmon Decay in Hybrid Plasmonic Modes. Plasmonics, 2016, 11, 909-915.	3.4	4
80	Nanoparticle assisted Raman information acquisition from metal encapsulated sandwich structure. Journal of Raman Spectroscopy, 2017, 48, 443-447.	2.5	4
81	Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene. Nanoscale Research Letters, 2018, 13, 124.	5.7	4
82	Growth dynamics of bubbles on a pore-patterned surface under reduced pressure. Physics of Fluids, 2019, 31, .	4.0	4
83	Plasmonic waveguide on metal nanowires with various symmetry breaking features. Optics Communications, 2019, 439, 171-175.	2.1	4
84	Sandwich optoplasmonic hybrid structure for surface enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120252.	3.9	4
85	Fano resonance properties of gold nanocrescent arrays. Applied Optics, 2014, 53, 6431.	1.8	3
86	Selective plasmonic trapping in periodic gold polygon tetramers. Superlattices and Microstructures, 2014, 75, 593-600.	3.1	3
87	Optoplasmonic MOFs film for SERS detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121362.	3.9	3
88	Photocatalysts: Multichannelâ€Improved Chargeâ€Carrier Dynamics in Wellâ€Designed Heteroâ€nanostructural Plasmonic Photocatalysts toward Highly Efficient Solarâ€toâ€Fuels Conversion (Adv. Mater. 39/2015). Advanced Materials, 2015, 27, 6075-6075.	21.0	2
89	Extraordinary acoustic transmission of a decorated window without ventilation. Applied Physics Letters, 2020, 117, 091902.	3.3	1
90	Light Focusing in Linear Arranged Symmetric Nanoparticle Trimer on Metal Film System. Chinese Physics B, O, , .	1.4	1

#	Article	IF	CITATIONS
91	Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120465.	3.9	1
92	Control light propagation and polarization with plasmons for surface-enhanced Raman scattering. , 2009, , .		0
93	Propagating plasmons on silver nanowires. , 2010, , .		0
94	Two-Camera Phase Measuring Profilometry System. Applied Mechanics and Materials, 0, 462-463, 3-8.	0.2	0
95	Drop expansion driven by bubbling on microscale patterned substrates under low air pressure. Chemical Engineering Journal, 2020, 391, 123547.	12.7	0
96	Self-assembly 2D Plasmonic Nanorice Film for SERS. Chinese Physics B, O, , .	1.4	0
97	Au nanobowtie on SiO2 microsphere foroptoplasmonic trapping. Applied Optics, 2021, 60, 7094-7098.	1.8	0
98	Mxenes–Au NP Hybrid Plasmonic 2D Microplates in Microfluidics for SERS Detection. Biosensors, 2022, 12, 505.	4.7	0