LluÃ-s López-Conesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877835/publications.pdf

Version: 2024-02-01

		393982	454577
57	992	19	30
papers	citations	h-index	g-index
F.0	50	5 0	1000
59	59	59	1932
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the Anisotropy in the Electrical Conductivity of CuPt _B -type Ordered GalnP Thin Films by Combining <i>In Situ</i> TEM Biasing and First Principles Calculations. ACS Applied Electronic Materials, 2022, 4, 3478-3485.	2.0	3
2	Electron Tomography. Springer Series in Materials Science, 2021, , 257-283.	0.4	O
3	Mapping the Magnetic Coupling of Self-Assembled Fe3O4 Nanocubes by Electron Holography. Materials, 2021, 14, 774.	1.3	3
4	Direct Measurement of Oxygen Mass Transport at the Nanoscale. Advanced Materials, 2021, 33, e2105622.	11.1	11
5	Apatite Mineralization Process from Silicocarnotite Bioceramics: Mechanism of Crystal Growth and Maturation. Crystal Growth and Design, 2020, 20, 4030-4045.	1.4	5
6	Independent Tuning of Optical Transparency Window and Electrical Properties of Epitaxial SrVO ₃ Thin Films by Substrate Mismatch. Advanced Functional Materials, 2019, 29, 1904238.	7.8	21
7	Facile and Efficient Atomic Hydrogenation Enabled Black TiO ₂ with Enhanced Photoâ€Electrochemical Activity via a Favorably Lowâ€Energyâ€Barrier Pathway. Advanced Energy Materials, 2019, 9, 1900725.	10.2	21
8	Zinc blende and wurtzite CoO polymorph nanoparticles: Rational synthesis and commensurate and incommensurate magnetic order. Applied Materials Today, 2019, 16, 322-331.	2.3	8
9	Cation disorder in Sr0.67Ba0.33Nb2O6 assessed by aberration corrected stem. Results in Materials, 2019, 3, 100038.	0.9	2
10	Grain Boundaries: Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries (Adv. Mater. 4/2019). Advanced Materials, 2019, 31, 1970026.	11.1	2
11	Sizeâ€Controlled Si Nanocrystals Fabricated by Electron Beam Evaporation. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800619.	0.8	2
12	Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries. Advanced Materials, 2019, 31, e1805360.	11.1	29
13	Effect of Si ₃ N ₄ â€Mediated Inversion Layer on the Electroluminescence Properties of Silicon Nanocrystal Superlattices. Advanced Electronic Materials, 2018, 4, 1700666.	2.6	9
14	Green Electroluminescence of Al/Tb/Al/SiO ₂ Devices Fabricated by Electron Beam Evaporation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700451.	0.8	1
15	Atomic-Scale Determination of Cation Inversion in Spinel-Based Oxide Nanoparticles. Nano Letters, 2018, 18, 5854-5861.	4.5	24
16	Unvealing GaN Polytypism in Distributed GaN/InAlN Bragg Reflectors Through HRTEM Image Simulation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800218.	0.8	1
17	Simulation of STEM-HAADF Image Contrast of Ruddlesden–Popper Faulted LaNiO ₃ Thin Films. Journal of Physical Chemistry C, 2017, 121, 9300-9304.	1.5	14
18	Tuning Branching in Ceria Nanocrystals. Chemistry of Materials, 2017, 29, 4418-4424.	3.2	19

#	Article	IF	Citations
19	The effect of Sb-surfactant on GalnP CuPt _B type ordering: assessment through dark field TEM and aberration corrected HAADF imaging. Physical Chemistry Chemical Physics, 2017, 19, 9806-9810.	1.3	4
20	Evidence of a minority monoclinic LaNiO _{2.5} phase in lanthanum nickelate thin films. Physical Chemistry Chemical Physics, 2017, 19, 9137-9142.	1.3	10
21	Assessing Oxygen Vacancies in Bismuth Oxide through EELS Measurements and DFT Simulations. Journal of Physical Chemistry C, 2017, 121, 24809-24815.	1.5	23
22	Atomistic modelling and high resolution electron microscopy simulations of CeO2nanoparticles. Applied Physics Letters, 2017, 111, 223107.	1.5	0
23	Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing. Nanoscale Research Letters, 2017, 12, 336.	3.1	16
24	3D Visualization of the Iron Oxidation State in FeO/Fe ₃ O ₄ Core–Shell Nanocubes from Electron Energy Loss Tomography. Nano Letters, 2016, 16, 5068-5073.	4. 5	56
25	Synthesis and Thermoelectric Properties of Noble Metal Ternary Chalcogenide Systems of Ag–Au–Se in the Forms of Alloyed Nanoparticles and Colloidal Nanoheterostructures. Chemistry of Materials, 2016, 28, 7017-7028.	3.2	26
26	Electron energy-loss spectroscopic tomography of FexCo(3â°'x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions. Analyst, The, 2016, 141, 4968-4972.	1.7	3
27	Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS. Physical Chemistry Chemical Physics, 2016, 18, 23264-23276.	1.3	4
28	$\label{lem:multiple} Multiple strain-induced phase transitions in $$\operatorname{In} \mathbb{R}^m = \mathbb{R}^n \mathbb$	ⁿ i 1.1	54
29	Structural and optical properties of Al-Tb/SiO2 multilayers fabricated by electron beam evaporation. Journal of Applied Physics, 2016, 120, .	1.1	4
30	Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications. Journal of Microscopy, 2016, 262, 142-150.	0.8	3
31	Charge transport in nanocrystalline SiC with and without embedded Si nanocrystals. Physical Review B, 2015, 91, .	1.1	8
32	On the use of Sb to improve the performance of GaInP subcells of multijunction solar cells. , 2015, , .		2
33	Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe _x O/Fe ₃ O ₄ nanoparticles as a case study. Nanoscale, 2015, 7, 3002-3015.	2.8	76
34	Absorption and emission of silicon nanocrystals embedded in SiC: Eliminating Fabry-PÃ @rot interference. Journal of Applied Physics, 2015, 117, .	1.1	10
35	Rare Earth-Ion/Nanosilicon Ultrathin Layer: A Versatile Nanohybrid Light-Emitting Building Block for Active Optical Metamaterials. Journal of Physical Chemistry C, 2015, 119, 11800-11808.	1.5	3
36	Growth, structure, luminescence and mechanical resonance of Bi ₂ O ₃ nano-and microwires. CrystEngComm, 2015, 17, 132-139.	1.3	12

#	Article	IF	Citations
37	Annealing temperature and barrier thickness effect on the structural and optical properties of silicon nanocrystals/SiO2 superlattices. Journal of Applied Physics, 2014, 116, 133505.	1.1	24
38	Silicon nanocrystals in SiNx/SiO2 hetero-superlattices: The loss of size control after thermal annealing. Journal of Applied Physics, 2014, 115, 244304.	1.1	19
39	Retrieving the electronic properties of silicon nanocrystals embedded in a dielectric matrix by low-loss EELS. Nanoscale, 2014, 6, 14971-14983.	2.8	18
40	Absence of quantum confinement effects in the photoluminescence of Si3N4–embedded Si nanocrystals. Journal of Applied Physics, 2014, 115, .	1.1	44
41	EELS tomography in multiferroic nanocomposites: from spectrum images to the spectrum volume. Nanoscale, 2014, 6, 6646-6650.	2.8	11
42	(Invited) Transport and Electroluminescence Properties of Size-Controlled Silicon Nanocrystals Embedded in SiO2 Matrix Following the Superlattice Approach. ECS Transactions, 2014, 61, 133-139.	0.3	0
43	Determining the crystalline degree of silicon nanoclusters/SiO2 multilayers by Raman scattering. Journal of Applied Physics, 2014, 115, .	1.1	39
44	Band Engineered Epitaxial 3D GaN-InGaN Core–Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2235-2240.	4.0	69
45	Silicon nanocrystals in carbide matrix. Solar Energy Materials and Solar Cells, 2014, 128, 138-149.	3.0	34
46	Structural and compositional properties of Er-doped silicon nanoclusters/oxides for multilayered photonic devices studied by STEM-EELS. Nanoscale, 2013, 5, 9963.	2.8	3
47	Carrier transport and electroluminescence efficiency of erbium-doped silicon nanocrystal superlattices. Applied Physics Letters, 2013, 103, .	1.5	20
48	(Invited) Optimizing Er-Doped Layer Stacks for Integrated Light Emitting Devices. ECS Transactions, 2013, 53, 81-84.	0.3	1
49	Structural, optical and electrical properties of silicon nanocrystals embedded in SixC1â^'x/SiC multilayer systems for photovoltaic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 639-644.	1.7	19
50	Boron doping of silicon rich carbides: Electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 551-558.	1.7	18
51	Synthesis, Characterization, and Humidity Detection Properties of Nb ₂ O ₅ Nanorods and SnO ₂ /Nb ₂ O ₅ Heterostructures. Journal of Physical Chemistry C, 2013, 117, 10086-10094.	1.5	41
52	Insight into the Compositional and Structural Nano Features of AlN/GaN DBRs by EELS-HAADF. Microscopy and Microanalysis, 2013, 19, 698-705.	0.2	10
53	Local Structure of Rare Earth Niobates (RE3NbO7, RE = Y, Er, Yb, Lu) for Proton Conduction Applications◴. Fuel Cells, 2013, 13, 29-33.	1.5	27
54	Structural and optical properties of size controlled Si nanocrystals in Si3N4 matrix: The nature of photoluminescence peak shift. Journal of Applied Physics, 2013, 114, .	1.1	31

LLuÃs LÃ³PEZ-CONESA

#	ARTICLE Hereroepitaxial growth of MgO(111) thin films on Alemmhmath	IF	CITATIONS
55	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>(0001): Evidence of a wurtzite to rocksalt</mml:math 	1.1	15
56	transformation. Physical Review B, 2012, 86 Selective area growth of a- and c-plane GaN nanocolumns by molecular beam epitaxy using colloidal nanolithography. Journal of Crystal Growth, 2012, 353, 1-4.	0.7	44
57	Structural and optical characterization of size controlled silicon nanocrystals in SiO2/SiOxNy multilayers. Energy Procedia, 2011, 10, 43-48.	1.8	16