
Davide Papurello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877748/publications.pdf Version: 2024-02-01

DAVIDE PARIBELLO

#	Article	IF	CITATIONS
1	Wood ash biomethane upgrading system: A case study. Renewable Energy, 2022, 182, 702-712.	8.9	7
2	CFD model for tubular SOFC stack fed directly by biomass. International Journal of Hydrogen Energy, 2022, 47, 6860-6872.	7.1	28
3	Hybrid Models for Indoor Temperature Prediction Using Long Short Term Memory Networks—Case Study Energy Center. Buildings, 2022, 12, 933.	3.1	4
4	Biogas trace compounds impact on high-temperature fuel cells short stack performance. International Journal of Hydrogen Energy, 2021, 46, 8792-8801.	7.1	35
5	CFD model for tubular SOFC directly fed by biomass. International Journal of Hydrogen Energy, 2021, 46, 17421-17434.	7.1	39
6	Effect of different pre-treatment methods on gasification properties of grass biomass. Renewable Energy, 2021, 170, 875-883.	8.9	22
7	CFD Performance Analysis of a Dish-Stirling System for Microgeneration. Processes, 2021, 9, 1142.	2.8	13
8	Experimental and model validation of a phase change material heat exchanger integrated into a real building. International Journal of Energy Research, 2021, 45, 18222-18236.	4.5	11
9	Study of H2S Removal Capability from Simulated Biogas by Using Waste-Derived Adsorbent Materials. Processes, 2020, 8, 1030.	2.8	17
10	Thermal Activation of Digested Sewage Sludges for Carbon Dioxide Removal from Biogas. Fuels, 2020, 1, 30-46.	2.7	7
11	H2S Removal with Sorbent Obtained from Sewage Sludges. Processes, 2020, 8, 130.	2.8	10
12	Management of Digestate and Exhausts from Solid Oxide Fuel Cells Produced in the Dry Anaerobic Digestion Pilot Plant: Microalgae Cultivation Approach. Waste and Biomass Valorization, 2020, 11, 6499-6514.	3.4	14
13	Biogas cleaning: Trace compounds removal with model validation. Separation and Purification Technology, 2019, 210, 80-92.	7.9	38
14	Experimental Analysis and Model Validation on the Performance of Impregnated Activated Carbons for the Removal of Hydrogen Sulfide (H2S) from Sewage Biogas. Processes, 2019, 7, 548.	2.8	9
15	Biogas Purification: A Comparison of Adsorption Performance in D4 Siloxane Removal Between Commercial Activated Carbons and Waste Wood-Derived Char Using Isotherm Equations. Processes, 2019, 7, 774.	2.8	32
16	Direct injection mass spectrometry technique for the odorant losses at ppb(v) level from nalophanâ,,¢ sampling bags. International Journal of Mass Spectrometry, 2019, 436, 137-146.	1.5	26
17	Characterization of a circular 80Âmm anode supported solid oxide fuel cell (AS-SOFC) with anode support produced using high-pressure injection molding (HPIM). International Journal of Hydrogen Energy, 2019, 44, 19405-19411.	7.1	25
18	SIMULATED SOFC EXHAUSTS AND THEIR FIXATION ON CHLORELLA VULGARIS: STUDY ON AFFECTING PARAMETERS. Detritus, 2019, In Press, 1.	0.9	1

Davide Papurello

#	Article	IF	CITATIONS
19	Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation. Renewable Energy, 2018, 125, 344-355.	8.9	48
20	SOFC single cells fed by biogas: Experimental tests with trace contaminants. Waste Management, 2018, 72, 306-312.	7.4	67
21	Physical Activation of Waste-Derived Materials for Biogas Cleaning. Energies, 2018, 11, 2338.	3.1	10
22	Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Applied Energy, 2018, 230, 1573-1584.	10.1	58
23	Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds. Renewable Energy, 2018, 127, 481-494.	8.9	43
24	Biogas Cleaning: Activated Carbon Regeneration for H2S Removal. Clean Technologies, 2018, 1, 40-57.	4.2	40
25	Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: Focus on the siloxane removal for SOFC applications. International Journal of Mass Spectrometry, 2018, 430, 69-79.	1.5	19
26	Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): Analysis through a proof-of-concept. Journal of CO2 Utilization, 2017, 18, 206-221.	6.8	39
27	Reporting Degradation from Different Fuel Contaminants in Niâ€anode SOFCs. Fuel Cells, 2017, 17, 423-433.	2.4	31
28	Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Progress in Energy and Combustion Science, 2017, 61, 150-188.	31.2	122
29	Trace compounds impact on SOFC performance: Experimental and modelling approach. Applied Energy, 2017, 208, 637-654.	10.1	54
30	Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes. Electrochimica Acta, 2017, 258, 98-109.	5.2	53
31	Biowaste for SOFCs. Energy Procedia, 2016, 101, 424-431.	1.8	50
32	Natural Gas Trace Compounds Analysis with Innovative Systems: PTR-ToF-MS and FASTGC. Energy Procedia, 2016, 101, 536-541.	1.8	14
33	The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas. Renewable Energy, 2016, 99, 747-753.	8.9	50
34	Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments. Journal of Power Sources, 2016, 326, 349-356.	7.8	53
35	Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Processing Technology, 2016, 152, 93-101.	7.2	33
36	Biogas trace compound removal with ashes using proton transfer reaction time-of-flight mass spectrometry as innovative detection tool. Fuel Processing Technology, 2016, 145, 62-75.	7.2	32

DAVIDE PAPURELLO

#	Article	lF	CITATIONS
37	Limiting factors for planar solid oxide fuel cells under different trace compound concentrations. Energy, 2016, 95, 67-78.	8.8	50
38	Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): Deactivation in single cells and a stack. Chemical Engineering Journal, 2016, 283, 1224-1233.	12.7	100
39	Solid oxide fuel cell anode degradation by the effect of siloxanes. Journal of Power Sources, 2015, 279, 460-471.	7.8	91
40	Biogas reforming process investigation for SOFC application. Energy Conversion and Management, 2015, 98, 252-258.	9.2	63
41	Waste to energy: Exploitation of biogas from organic waste in aÂ500ÂWel solid oxide fuel cell (SOFC) stack. Energy, 2015, 85, 145-158.	8.8	104
42	Proton transfer reaction mass spectrometry technique for the monitoring of volatile sulfur compounds in a fuel cell quality clean-up system. Fuel Processing Technology, 2015, 130, 136-146.	7.2	34
43	Proton transfer reaction-mass spectrometry as a rapid inline tool for filter efficiency of activated charcoal in support of the development of Solid Oxide Fuel Cells fueled with biogas. Fuel Processing Technology, 2015, 130, 78-86.	7.2	31
44	Biogas from the organic fraction of municipal solid waste: Dealing with contaminants for a solid oxide fuel cell energy generator. Waste Management, 2014, 34, 2047-2056.	7.4	39
45	Performance of a Solid Oxide Fuel Cell short-stack with biogas feeding. Applied Energy, 2014, 125, 254-263.	10.1	80

Influence of co-vapors on biogas filtration for fuel cells monitored with PTR-MS (Proton Transfer) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 3 7.2

47	Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Bioresource Technology, 2012, 126, 254-265.	9.6	78	
----	---	-----	----	--