
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877404/publications.pdf Version: 2024-02-01

Если Намали

#	Article	IF	CITATIONS
1	Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Materials & Design, 2014, 53, 283-292.	5.1	261
2	Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization. Materials, 2012, 5, 1487-1494.	2.9	148
3	Microstructure and bioâ€corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 1178-1187.	1.5	96
4	Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. Materials Science and Engineering C, 2016, 60, 526-537.	7.3	83
5	In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 257-267.	3.1	83
6	Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2014, 118, 111-122.	3.6	60
7	Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Materials Science and Engineering C, 2019, 102, 53-65.	7.3	51
8	Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys. Journal of Materials Engineering and Performance, 2014, 23, 3620-3629.	2.5	50
9	Corrosion and bioactivity performance of graphene oxide coating on Ti Nb shape memory alloys in simulated body fluid. Materials Science and Engineering C, 2016, 68, 687-694.	7.3	47
10	Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corrosion Reviews, 2014, 32, 129-141.	2.0	45
11	Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X=Mn or Ti). Transactions of Nonferrous Metals Society of China, 2015, 25, 1158-1170.	4.2	43
12	Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti–23 at% Nb shape-memory alloys. Materials and Design, 2017, 118, 152-162.	7.0	40
13	Thermal Characteristics, Mechanical Properties, In Vitro Degradation and Cytotoxicity of Novel Biodegradable Zn–Al–Mg and Zn–Al–Mg–xBi Alloys. Acta Metallurgica Sinica (English Letters), 2017, 30, 201-211.	2.9	39
14	Application of Environmentally-Friendly Coatings Toward Inhibiting the Microbially Influenced Corrosion (MIC) of Steel: A Review. Polymer Reviews, 2014, 54, 702-745.	10.9	38
15	Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3528-3542.	2.2	35
16	Structure-Property Relationship of Cu-Al-Ni-Fe Shape Memory Alloys in Different Quenching Media. Journal of Materials Engineering and Performance, 2014, 23, 255-261.	2.5	33
17	EFFECT OF COATING THICKNESS ON THE PROPERTIES OF TiN COATINGS DEPOSITED ON TOOL STEELS USING CATHODIC ARC PVD TECHNIQUE. Surface Review and Letters, 2008, 15, 401-410.	1.1	32
18	Effect of heat treatment on the microstructure and corrosion behaviour of Mg–Zn alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 999-1006.	1.5	32

#	Article	IF	CITATIONS
19	Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys. Journal of Materials Engineering and Performance, 2017, 26, 653-666.	2.5	28
20	The Mechanical Properties and Corrosion Behavior of Double-Layered Nano Hydroxyapatite-Polymer Coating on Mg-Ca Alloy. Journal of Materials Engineering and Performance, 2015, 24, 4010-4021.	2.5	27
21	Corrosion Behaviour of Carbon Steel in Sea Water Medium in Presence of P. aeruginosa Bacteria. Arabian Journal for Science and Engineering, 2014, 39, 6863-6870.	1.1	26
22	Tailoring Microstructure and Properties of a Superelastic Ti–Ta Alloy by Incorporating Spark Plasma Sintering with Thermomechanical Processing. Journal of Materials Engineering and Performance, 2019, 28, 3012-3020.	2.5	26
23	Effect of a fourth alloying element on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Journal of Materials Research, 2015, 30, 2258-2269.	2.6	25
24	Effect of chromium addition on microstructure, tensile properties and creep resistance of as-cast Ti-48Al alloy. Journal of Materials Science, 2007, 42, 9063-9069.	3.7	23
25	Synthesis of novel nanostructured bredigite–amoxicillin scaffolds for bone defect treatment: cytocompatibility and antibacterial activity. Journal of Sol-Gel Science and Technology, 2018, 86, 83-93.	2.4	23
26	Pomelo Peel Extract as Corrosion Inhibitor for Steel in Simulated Seawater and Acidic Mediums. Journal of Materials Engineering and Performance, 2020, 29, 2202-2215.	2.5	22
27	Effect of zeolite on the corrosion behavior, biocompatibility and antibacterial activity of porous magnesium/zeolite composite scaffolds. Materials Technology, 2019, 34, 258-269.	3.0	19
28	Effect of Electrodeposition Parameters on the Microstructure and Corrosion Behavior of ‎ <scp>DCPD</scp> Coatings on Biodegradable <scp>M</scp> g– <scp>C</scp> a– <scp>Z</scp> n Alloy. International Journal of Applied Ceramic Technology, 2015, 12, 1054-1064.	2.1	17
29	Microstructure and corrosion behaviour of Cu-Al-Ni shape memory alloys with Ag nanoparticles. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 527-534.	1.5	17
30	Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys. Scanning, 2017, 2017, 1-13.	1.5	17
31	Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1165-1175.	3.6	16
32	The role of solution heat treatment on corrosion and mechanical behaviour of Mg–Zn biodegradable alloys. Canadian Metallurgical Quarterly, 2016, 55, 53-64.	1.2	15
33	MACRODROPLET REDUCTION AND GROWTH MECHANISMS IN CATHODIC ARC PHYSICAL VAPOR DEPOSITION OF TiN FILMS. Surface Review and Letters, 2008, 15, 653-659.	1.1	14
34	Localised corrosion of mild steel in presence of <i>Pseudomonas aeruginosa</i> biofilm. Corrosion Engineering Science and Technology, 2015, 50, 538-546.	1.4	12
35	Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys. Journal of Materials Engineering and Performance, 2015, 24, 1522-1530.	2.5	12
36	Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings. Journal of Materials Engineering and Performance, 2015, 24, 2614-2627.	2.5	12

#	Article	IF	CITATIONS
37	Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy. Journal of Materials Engineering and Performance, 2016, 25, 3948-3959.	2.5	12
38	Clinoenstatite/Tantalum Coating for Enhancement of Biocompatibility and Corrosion Protection of Mg Alloy. Journal of Functional Biomaterials, 2020, 11, 26.	4.4	12
39	Cold deformation and heat treatment influence on the microstructures and corrosion behavior of AISI 304 stainless steel. Canadian Metallurgical Quarterly, 2013, 52, 449-457.	1.2	11
40	Microwave sintering effects on the microstructure and mechanical properties of Tiâ^'51at%Ni shape memory alloys. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 280-288.	4.9	11
41	Microstructure, Mechanical Properties, and Shape Memory Effect of Annealed Cu-Al-Ni-xCo Shape Memory Alloys. Metallography, Microstructure, and Analysis, 2018, 7, 57-64.	1.0	11
42	Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5242-5255.	2.2	10
43	Microstructure, phase evolution and corrosion behaviour of the Zn–Al–Mg–Sb alloy coating on steel. Materials Science and Technology, 2020, 36, 353-366.	1.6	10
44	Role of Ag addition on microstructure, mechanical properties, corrosion behavior and biocompatibility of porous Ti-30 at%Ta shape memory alloys. Journal of Central South University, 2020, 27, 3175-3187.	3.0	10
45	Powder Metallurgy Fabrication of Porous 51(at.%)Ni–Ti Shape Memory Alloys for Biomedical Applications. Shape Memory and Superelasticity, 2018, 4, 327-336.	2.2	9
46	In Vitro Microstructure, Mechanical Properties and Corrosion Behaviour of Low, Medium and High Carbon Steel Under Different Heat Treatments. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	2.6	9
47	Corrosion Behavior of Cu–Al–Ni–xCo Shape Memory Alloys Coupled with Low-Carbon Steel for Civil Engineering Applications. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	2.6	9
48	Synthesis and characterization of high-quality polyaniline nanofibres. High Performance Polymers, 2013, 25, 236-242.	1.8	8
49	Influence of addition of carbon nanotubes on structure–properties of Cu–Al–Ni shape memory alloys. Materials Science and Technology, 2014, 30, 458-464.	1.6	7
50	Characterisation and thermodynamic calculations of biodegradable Mg–2.2Zn–3.7Ce and Mg–Ca–2.2Zn–3.7Ce alloys. Materials Science and Technology, 2017, 33, 1333-1345.	1.6	7
51	Shape memory characteristics of microwave sintered porous Ti–30 at.%Ta alloy for biomedical applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 1979-1989.	2.1	7
52	ADHESION STRENGTH OF TiN COATINGS AT VARIOUS ION ETCHING DEPOSITED ON TOOL STEELS USING CATHODIC ARC PVD TECHNIQUE. Surface Review and Letters, 2009, 16, 29-35.	1.1	6
53	Creep Behavior of As-Cast Ti-48Al-2Cr Intermetallic Alloy for Aerospace and Automotive Applications. Materials and Manufacturing Processes, 2007, 22, 793-797.	4.7	5
54	Titania-carbon nanotubes nanocomposite coating on Mg alloy: Microstructural characterisation and mechanical properties. Materials Science and Technology, 2018, 34, 378-387.	1.6	5

#	Article	IF	CITATIONS
55	Heat-Conduction-Type and Keyhole-Type Laser Welding of Ti–Ni Shape-Memory Alloys Processed by Spark-Plasma Sintering. Materials Transactions, 2018, 59, 835-842.	1.2	5
56	Preparation of poly(εâ€caprolactone)â€hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Material Design and Processing Communications, 2020, 2, e170.	0.9	5
57	Deformation Influences on Microstructure, Mechanical Properties, and Shape Memory Behavior of Cu–Al–Ni–xTi Shape Memory Alloys. Metallography, Microstructure, and Analysis, 2019, 8, 406-414.	1.0	3
58	Influence of fabrication methods on the microstructures and hardness of Ti-Ni, Ti-Nb and Ti-Ta for biomedical applications. Materials Today: Proceedings, 2021, 39, 975-978.	1.8	3
59	Relationship between the microstructure and the heat treatment and creep behavior of Fe–33Ni–19Cr alloy. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1719-1738.	3.4	3
60	In Vitro Microstructure, Shape Memory, Corrosion, and Biocompatibility Characteristics of Porous Ti-51Âat.%Ni-xSn Shape Memory Alloys. Metallography, Microstructure, and Analysis, 2022, 11, 150-157.	1.0	3
61	Hard coating deposits: incompatible working energy and forced behaviours of gaseous and solid atoms. Advances in Materials and Processing Technologies, 2022, 8, 498-517.	1.4	2
62	Effect of Ce and Sb Elements Addition on Porous Ti–23 wt%Nb–Sn for Biomedical Applications. Shape Memory and Superelasticity, 2021, 7, 515.	2.2	2
63	Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at. %) Ni shape memory alloy fabricated by microwave sintering. AIP Conference Proceedings, 2017, , .	0.4	1
64	Effect of annealing on the microstructures and deformation behaviour of Ti–50.7at.%Ni shape memory alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 436-445.	1.1	0