
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877133/publications.pdf Version: 2024-02-01

IOHN F DE CROOT

#	Article	IF	CITATIONS
1	Liquid biopsy in gliomas: A RANO review and proposals for clinical applications. Neuro-Oncology, 2022, 24, 855-871.	1.2	38
2	Imaging Primer on Chimeric Antigen Receptor T-Cell Therapy for Radiologists. Radiographics, 2022, 42, 176-194.	3.3	11
3	Clinical and survival characteristics of primary and secondary gliosarcoma patients. Clinical Neurology and Neurosurgery, 2022, 214, 107146.	1.4	4
4	Molecular, Histological, and Clinical Characteristics of Oligodendrogliomas: A Multi-Institutional Retrospective Study. Neurosurgery, 2022, Publish Ahead of Print, .	1.1	0
5	A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncology, 2022, 11, CNS87.	3.0	15
6	Blood–brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. Journal of Neuro-Oncology, 2021, 151, 65-73.	2.9	31
7	Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro-Oncology, 2021, 23, 284-294.	1.2	78
8	PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncology, 2021, 23, 920-931.	1.2	58
9	The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab015.	0.7	16
10	Validation of diffusion MRI as a biomarker for efficacy using randomized phase III trial of bevacizumab with or without VB-111 in recurrent glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab082.	0.7	2
11	A prospective phase II randomized trial of proton radiotherapy vs intensity-modulated radiotherapy for patients with newly diagnosed glioblastoma. Neuro-Oncology, 2021, 23, 1337-1347.	1.2	50
12	Report of National Brain Tumor Society roundtable workshop on innovating brain tumor clinical trials: building on lessons learned from COVID-19 experience. Neuro-Oncology, 2021, 23, 1252-1260.	1.2	11
13	Phase II Trial of Proton Therapy vs. Photon IMRT for GBM: Secondary Analysis Comparison of Progression Free Survival between RANO vs. Clinical Assessment. Neuro-Oncology Advances, 2021, 3, vdab073.	0.7	1
14	RARE-23. DIFFUSE LEPTOMENINGEAL GLIONEURONAL TUMOR: A CASE SERIES. Neuro-Oncology, 2021, 23, i45-i45.	1.2	0
15	OTME-23. Single-cell transcriptomic and epigenomic immune landscape of isocitrate dehydrogenase stratified human gliomas. Neuro-Oncology Advances, 2021, 3, ii18-ii18.	0.7	0
16	Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nature Communications, 2021, 12, 4228.	12.8	21
17	Abstract LB125: Pharmacokinetics of paxalisib in phase 2 clinical study in glioblastoma (GBM) with unmethylated O6-methylguanine-methyltransferase (MGMT) promotor status. , 2021, , .		0
18	IDH mutation status and the development of venous thromboembolism in astrocytoma patients. Journal of the Neurological Sciences, 2021, 427, 117538.	0.6	4

#	Article	IF	CITATIONS
19	Intrinsic Interferon Signaling Regulates the Cell Death and Mesenchymal Phenotype of Glioblastoma Stem Cells. Cancers, 2021, 13, 5284.	3.7	14
20	A validated integrated clinical and molecular glioblastoma long-term survival-predictive nomogram. Neuro-Oncology Advances, 2021, 3, vdaa146.	0.7	10
21	Aggressiveness of care at end of life in patients with highâ€grade glioma. Cancer Medicine, 2021, 10, 8387-8394.	2.8	9
22	Immunotherapy for Neuro-oncology. Advances in Experimental Medicine and Biology, 2021, 1342, 233-258.	1.6	4
23	Immune biology of glioma associated macrophages and microglia: Functional and therapeutic implications. Neuro-Oncology, 2020, 22, 180-194.	1.2	95
24	Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nature Medicine, 2020, 26, 39-46.	30.7	236
25	Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-Oncology, 2020, 22, 539-549.	1.2	98
26	A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro-Oncology, 2020, 22, 705-717.	1.2	47
27	Current Role of Radiation Therapy in the Management of Malignant Central Nervous System Tumors. Hematology/Oncology Clinics of North America, 2020, 34, 13-28.	2.2	9
28	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	7.0	26
29	Pineal parenchymal tumor of intermediate differentiation: a single-institution experience. Neuro-Oncology Practice, 2020, 7, 613-619.	1.6	7
30	Longâ€ŧerm survival among 5â€year survivors of adolescent and young adult cancer. Cancer, 2020, 126, 3708-3718.	4.1	33
31	Neurologic Toxicities of Cancer Immunotherapies: a Review. Current Neurology and Neuroscience Reports, 2020, 20, 27.	4.2	17
32	Role of Neutrophils and Myeloid-Derived Suppressor Cells in Glioma Progression and Treatment Resistance. International Journal of Molecular Sciences, 2020, 21, 1954.	4.1	56
33	Robust detection of oncometabolic aberrations by 1H–13C heteronuclear single quantum correlation in intact biological specimens. Communications Biology, 2020, 3, 328.	4.4	3
34	Impact of adverse events of bevacizumab on survival outcomes of patients with recurrent glioblastoma. Journal of Clinical Neuroscience, 2020, 74, 36-40.	1.5	6
35	Glioblastoma-mediated Immune Dysfunction Limits CMV-specific T Cells and Therapeutic Responses: Results from a Phase I/II Trial. Clinical Cancer Research, 2020, 26, 3565-3577.	7.0	30
36	Immunotherapy for Neuro-Oncology. Advances in Experimental Medicine and Biology, 2020, 1244, 183-203.	1.6	10

#	Article	IF	CITATIONS
37	Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nature Cancer, 2020, 1, 423-436.	13.2	218
38	The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas. Journal of Immunotherapy and Precision Oncology, 2020, 3, 157-164.	1.4	2
39	Depletion of CLK2 sensitizes glioma stem-like cells to PI3K/mTOR and FGFR inhibitors. American Journal of Cancer Research, 2020, 10, 3765-3783.	1.4	2
40	Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma. Expert Opinion on Pharmacotherapy, 2019, 20, 1609-1624.	1.8	8
41	Treatment strategies for glioblastoma in older patients: age is just a number. Journal of Neuro-Oncology, 2019, 145, 357-364.	2.9	12
42	Are we AKT-ually getting closer to making targeted therapy successful in breast cancer brain metastases?. Neuro-Oncology, 2019, 21, 1344-1345.	1.2	1
43	Effect of health disparities on overall survival of patients with glioblastoma. Journal of Neuro-Oncology, 2019, 142, 365-374.	2.9	9
44	Prospective Clinical Sequencing of Adult Glioma. Molecular Cancer Therapeutics, 2019, 18, 991-1000.	4.1	15
45	Clinical trial participation of patients with glioblastoma at The University of Texas MD Anderson Cancer Center. European Journal of Cancer, 2019, 112, 83-93.	2.8	15
46	Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 2019, 25, 477-486.	30.7	932
47	Mechanism-Specific Pharmacodynamics of a Novel Complex-I Inhibitor Quantified by Imaging Reversal of Consumptive Hypoxia with [18F]FAZA PET In Vivo. Cells, 2019, 8, 1487.	4.1	20
48	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	27.8	320
49	Disparities along the glioblastoma clinical trials landscape. Neuro-Oncology, 2019, 21, 285-286.	1.2	6
50	Phase 1 leadâ€in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma. Cancer, 2019, 125, 424-433.	4.1	46
51	Pre-surgical connectome features predict IDH status in diffuse gliomas. Oncotarget, 2019, 10, 6484-6493.	1.8	14
52	Volumetric response quantified using T1 subtraction predicts long-term survival benefit from cabozantinib monotherapy in recurrent glioblastoma. Neuro-Oncology, 2018, 20, 1411-1418.	1.2	24
53	Multi-center study finds postoperative residual non-enhancing component of glioblastoma as a new determinant of patient outcome. Journal of Neuro-Oncology, 2018, 139, 125-133.	2.9	26
54	Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma. Neuro-Oncology, 2018, 20, 1240-1250.	1.2	64

#	Article	IF	CITATIONS
55	Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients with prior antiangiogenic therapy. Neuro-Oncology, 2018, 20, 259-267.	1.2	41
56	Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy. Neuro-Oncology, 2018, 20, 249-258.	1.2	78
57	Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clinical Cancer Research, 2018, 24, 295-305.	7.0	68
58	Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 0539. Journal of Neurosurgery, 2018, 129, 35-47.	1.6	178
59	Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nature Reviews Clinical Oncology, 2018, 15, 47-62.	27.6	1,659
60	Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro-Oncology, 2018, 20, 113-122.	1.2	56
61	DDIS-03. EGFR AMPLIFICATION INDUCED INCREASED DNA DAMAGE RESPONSE AND PREDICTED SELECTIVE SENSITIVITY TO TALAZOPARIB (PARP INHIBITOR) IN GLIOBLASTOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi69-vi69.	1.2	0
62	INNV-13. ALLELE: A CONSORTIUM FOR PROSPECTIVE GENOMICS AND FUNCTIONAL DIAGNOSTICS TO GUIDE PATIENT CARE AND TRIAL ANALYSIS IN NEWLY-DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi140-vi141.	1.2	0
63	PATH-08. THE IVY GLIOBLASTOMA PATIENT ATLAS - A NOVEL CLINICAL AND RADIO-GENOMICS RESOURCE FOR EARLY PHASE CLINICAL TRIAL DESIGN AND INTERPRETATION. Neuro-Oncology, 2018, 20, vi159-vi159.	1.2	0
64	ATIM-12. NEOADJUVANT ANTI-PD-1 IMMUNOTHERAPY PROMOTES INTRATUMORAL AND SYSTEMIC IMMUNE RESPONSES IN RECURRENT GLIOBLASTOMA: AN IVY CONSORTIUM TRIAL. Neuro-Oncology, 2018, 20, vi3-vi3.	1.2	1
65	NIMG-03. RADIOMIC TEXTURE ANALYSIS TO PREDICT RESPONSE TO IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi176-vi176.	1.2	1
66	ATIM-07. WINDOW-OF-OPPORTUNITY CLINICAL TRIAL OF PEMBROLIZUMAB IN RECURRENT GLIOBLASTOMA PATIENTS. Neuro-Oncology, 2018, 20, vi2-vi2.	1.2	0
67	ATIM-29. NRG BN002: SAFETY DATA FROM A PHASE I STUDY OF IPILIMUMAB (IPI), NIVOLUMAB (NIVO), AND THE COMBINATION FOR NEWLY DIAGNOSED GLIOBLASTOMA (GBM). Neuro-Oncology, 2018, 20, vi7-vi7.	1.2	0
68	STEM-11. DIRECTED NEURONAL DIFFERENTIATION AS A THERAPEUTIC STRATEGY FOR MALIGNANT GLIOMAS. Neuro-Oncology, 2018, 20, vi246-vi246.	1.2	0
69	INNV-15. ANALYSIS OF CHALLENGES TO ACCRUAL IN CLINICAL TRIALS FOR NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi141-vi141.	1.2	0
70	ACTR-27. PHASE 2 STUDY OF DIANHYDROGALACTITOL (VAL-083) IN PATIENTS WITH MGMT-UNMETHYLATED, BEVACIZUMAB-NAÃVE RECURRENT GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi17-vi17.	1.2	2
71	ATIM-10. A PHASE I/II CLINICAL TRIAL OF AUTOLOGOUS CMV-SPECIFIC CYTOTOXIC T CELLS (CMV-TC) FOR GLIOBLASTOMA: DOSE ESCALATION AND CORRELATIVE RESULTS. Neuro-Oncology, 2018, 20, vi2-vi3.	1.2	4
72	EPID-08. EFFECT OF HEALTH DISPARITIES ON OVERALL SURVIVAL OF PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi81-vi81.	1.2	0

#	Article	IF	CITATIONS
73	ACTR-51. PHASE 2 STUDY TO EVALUATE THE SAFETY, PHARMACOKINETICS AND CLINICAL ACTIVITY OF PI3K/MTOR INHIBITOR GDC-0084 GIVEN TO GLIOBLASTOMA (GBM) PATIENTS WITH UNMETHYLATED O6-METHYLGUANINE-METHYLTRANSFERASE PROMOTER STATUS. Neuro-Oncology, 2018, 20, vi23-vi23.	1.2	0
74	ACTR-34. INTEGRATED CLINICAL EXPERIENCE WITH ONC201 IN PREVIOUSLY-TREATED H3 K27M-MUTANT GLIOMA PATIENTS. Neuro-Oncology, 2018, 20, vi19-vi19.	1.2	3
75	RARE-13. CHARACTERIZATION OF ADULT MEDULLOBLASTOMA PATIENTS AT RECURRENCE: RETROSPECTIVE REVIEW OF THE MD ANDERSON CANCER CENTER EXPERIENCE. Neuro-Oncology, 2018, 20, vi239-vi239.	1.2	1
76	Lower-grade gliomas: the wrong target for bevacizumab. Neuro-Oncology, 2018, 20, 1559-1560.	1.2	2
77	EXTH-12. EFFECT OF THE PROTEIN ARGININE METHYLTRANSFERASE PRMT5 INHIBITION IN GLIOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi87-vi87.	1.2	0
78	IMMU-48. GLIOMA IMMUNE PROFILING REVEALS UNIQUE IMMUNE THERAPEUTIC OPPORTUNITIES. Neuro-Oncology, 2018, 20, vi132-vi132.	1.2	0
79	DRES-05. MOLECULAR EVOLUTION OF DIFFUSE GLIOMAS AND THE GLIOMA LONGITUDINAL ANALYSIS CONSORTIUM. Neuro-Oncology, 2018, 20, vi76-vi76.	1.2	0
80	The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. Journal of Neuro-Oncology, 2018, 140, 591-603.	2.9	38
81	A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models. Clinical Cancer Research, 2018, 24, 6288-6299.	7.0	74
82	Treatment of Glioblastoma in the Elderly. Drugs and Aging, 2018, 35, 707-718.	2.7	11
83	Highlighting the need for reliable clinical trials in glioblastoma. Expert Review of Anticancer Therapy, 2018, 18, 1031-1040.	2.4	12
84	Targetable Gene Fusions Associate With the IDH Wild-Type Astrocytic Lineage in Adult Gliomas. Journal of Neuropathology and Experimental Neurology, 2018, 77, 437-442.	1.7	72
85	Ependymomas overexpress chemoresistance and DNA repair-related proteins. Oncotarget, 2018, 9, 7822-7831.	1.8	8
86	The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget, 2018, 9, 10497-10509.	1.8	18
87	Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. Journal of Neuro-Oncology, 2017, 132, 181-188.	2.9	16
88	Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology, 2017, 19, 1047-1057.	1.2	325
89	CATNON interim results: another triumph of upfront chemotherapy in glioma. Neuro-Oncology, 2017, 19, 1287-1288.	1.2	1
90	Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nature Communications. 2017. 8, 949.	12.8	191

#	Article	IF	CITATIONS
91	Diffusion MRI Phenotypes Predict Overall Survival Benefit from Anti-VEGF Monotherapy in Recurrent Glioblastoma: Converging Evidence from Phase II Trials. Clinical Cancer Research, 2017, 23, 5745-5756.	7.0	53
92	CMET-09. PAN-CANCER PROFILES OF BRAIN METASTASES: PRIORITIZATION OF THERAPEUTIC TARGETS. Neuro-Oncology, 2017, 19, vi40-vi41.	1.2	0
93	NIMG-28. INCREASED MUTATION BURDEN (HYPERMUTATION) IN GLIOMAS IS ASSOCIATED WITH AÂUNIQUE RADIOMIC TEXTURE SIGNATURE IN MAGNETIC RESONANCE IMAGING. Neuro-Oncology, 2017, 19, vi147-vi148.	1.2	1
94	NIMG-01. DIFFUSION MRI PHENOTYPES PREDICT OVERALL SURVIVAL BENEFIT FROM ANTI-VEGF MONOTHERAPY IN GLIOBLASTOMA AT FIRST OR SECOND RELAPSE. Neuro-Oncology, 2017, 19, vi142-vi143.	1.2	0
95	DRES-09. THERAPEUTIC TARGETING OF CLK2 AND PI3K/mTOR IN GLIOBLASTOMA STEM CELLS. Neuro-Oncology, 2017, 19, vi65-vi65.	1.2	0
96	Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget, 2017, 8, 96970-96983.	1.8	24
97	A relative increase in circulating platelets following chemoradiation predicts for poor survival of patients with glioblastoma. Oncotarget, 2017, 8, 90488-90495.	1.8	13
98	Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma. Oncotarget, 2016, 7, 26793-26805.	1.8	37
99	Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncology, 2016, 18, 1357-1366.	1.2	116
100	Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 627-642.	3.3	102
101	A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma. Journal of Neuro-Oncology, 2016, 129, 487-494.	2.9	52
102	Impact of IDH1 mutation status on outcome in clinical trials for recurrent glioblastoma. Journal of Neuro-Oncology, 2016, 129, 147-154.	2.9	36
103	Periostin (POSTN) Regulates Tumor Resistance to Antiangiogenic Therapy in Glioma Models. Molecular Cancer Therapeutics, 2016, 15, 2187-2197.	4.1	69
104	Prioritization schema for immunotherapy clinical trials in glioblastoma. OncoImmunology, 2016, 5, e1145332.	4.6	13
105	Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro-Oncology, 2016, 18, 1230-1241.	1.2	55
106	Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 2016, 18, 557-564.	1.2	432
107	Adult brainstem gliomas: Correlation of clinical and molecular features. Journal of the Neurological Sciences, 2015, 353, 92-97.	0.6	44
108	Recurrent encephaloclastic cyst induced by intraventricular topotecan. Journal of the Neurological Sciences, 2015, 349, 52-53.	0.6	6

7

#	Article	IF	CITATIONS
109	Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro-Oncology, 2015, 17, 266-273.	1.2	61
110	Seek and Destroy: Relating Cancer Drivers to Therapies. Cancer Cell, 2015, 27, 319-321.	16.8	5
111	Primary and secondary gliosarcomas: clinical, molecular and survival characteristics. Journal of Neuro-Oncology, 2015, 125, 401-410.	2.9	59
112	Interferon-regulatory factor-1 (IRF1) regulates bevacizumab induced autophagy. Oncotarget, 2015, 6, 31479-31492.	1.8	27
113	Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects. Clinical Cancer Research, 2014, 20, 5612-5619.	7.0	129
114	Pregnancy and glial brain tumors. Neuro-Oncology, 2014, 16, 1289-1294.	1.2	76
115	B lymphoblastic leukemia/lymphoma presenting as seventh cranial nerve palsy. Neurology: Clinical Practice, 2013, 3, 532-534.	1.6	0
116	Antiangiogenic Therapy for Glioblastoma: The Challenge of Translating Response Rate into Efficacy. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, 33, e71-e78.	3.8	9
117	Antiangiogenic Therapy for Glioblastoma: The Challenge of Translating Response Rate into Efficacy. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e71-e78.	3.8	5
118	Modulating Antiangiogenic Resistance by Inhibiting the Signal Transducer and Activator of Transcription 3 Pathway in Glioblastoma. Oncotarget, 2012, 3, 1036-1048.	1.8	71
119	Glutamate and the biology of gliomas. Glia, 2011, 59, 1181-1189.	4.9	246
120	Myeloid Biomarkers Associated with Glioblastoma Response to Anti-VEGF Therapy with Aflibercept. Clinical Cancer Research, 2011, 17, 4872-4881.	7.0	59
121	High-Dose Antiangiogenic Therapy for Glioblastoma: Less May Be More?. Clinical Cancer Research, 2011, 17, 6109-6111.	7.0	17
122	Bevacizumab and Irinotecan in the Treatment of Recurrent Malignant Gliomas. Cancer Journal (Sudbury, Mass), 2008, 14, 279-285.	2.0	57
123	New molecular targets in malignant gliomas. Current Opinion in Neurology, 2007, 20, 712-718.	3.6	32
124	The Excitatory Amino Acid Transporter-2 Induces Apoptosis and Decreases Glioma Growth In vitro and In vivo. Cancer Research, 2005, 65, 1934-1940.	0.9	80