Carl H Bolster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/787695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity and uncertainty analysis for predicted soil test phosphorus using APLE model. Journal of Environmental Quality, 2022, , .	1.0	1
2	Defining relative yield for soil test correlation and calibration trials in the Fertilizer Recommendation Support Tool. Soil Science Society of America Journal, 2022, 86, 1338-1353.	1.2	5
3	Rainfall-runoff models compared for tile-drained agricultural fields in the Western Lake Erie Basin, Ohio. Journal of Hydrology, 2022, 610, 127959.	2.3	2
4	Comparing measures for determination of phosphorus saturation as a method to estimate dissolved P in soil solution. Geoderma, 2021, 383, 114708.	2.3	28
5	Comparing unamended and Fe-coated biochar on removal efficiency of bacteria, microspheres, and dissolved phosphorus in sand filters. Biochar, 2021, 3, 329-338.	6.2	6
6	Evaluating the effectiveness of the phosphorus sorption index for estimating maximum phosphorus sorption capacity. Soil Science Society of America Journal, 2020, 84, 994-1005.	1.2	5
7	Development of PLEAD: A Database Containing Eventâ€based Runoff Phosphorus Loadings from Agricultural Fields. Journal of Environmental Quality, 2019, 48, 510-517.	1.0	3
8	Role of sand size on bacterial retention in biochar-amended sand filters. Biochar, 2019, 1, 353-363.	6.2	6
9	Effect of Manure Application Rate and Rainfall Timing on the Leaching of Antibiotic-Resistant Bacteria and Their Associated Genes. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	8
10	Comparison of Two Methods for Calculating the P Sorption Capacity Parameter in Soils. Soil Science Society of America Journal, 2018, 82, 493-501.	1.2	3
11	Evaluation of the TBET Model for Potential Improvement of Southern P Indices. Journal of Environmental Quality, 2017, 46, 1341-1348.	1.0	11
12	Use of Annual Phosphorus Loss Estimator (APLE) Model to Evaluate a Phosphorus Index. Journal of Environmental Quality, 2017, 46, 1380-1387.	1.0	13
13	Comparing an Annual and a Daily Timeâ€Step Model for Predicting Fieldâ€Scale Phosphorus Loss. Journal of Environmental Quality, 2017, 46, 1314-1322.	1.0	14
14	Model parameter uncertainty analysis for an annual field-scale P loss model. Journal of Hydrology, 2016, 539, 27-37.	2.3	8
15	Applicability of Models to Predict Phosphorus Losses in Drained Fields: A Review. Journal of Environmental Quality, 2015, 44, 614-628.	1.0	96
16	Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrological Processes, 2015, 29, 588-601.	1.1	54
17	Phosphorus Fate, Management, and Modeling in Artificially Drained Systems. Journal of Environmental Quality, 2015, 44, 460-466.	1.0	85
18	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	2.8	210

CARL H BOLSTER

#	Article	IF	CITATIONS
19	Transport of <i>Escherichia coli</i> , <i>Salmonella typhimurium</i> , and Microspheres in Biochar-Amended Soils with Different Textures. Journal of Environmental Quality, 2014, 43, 371-388.	1.0	42
20	Sensitivity and Uncertainty Analysis for the Annual Phosphorus Loss Estimator Model. Journal of Environmental Quality, 2013, 42, 1109-1118.	1.0	26
21	Influence of Feedstock and Pyrolysis Temperature of Biochar Amendments on Transport of <i>Escherichia coli</i> in Saturated and Unsaturated Soil. Environmental Science & Technology, 2012, 46, 8097-8105.	4.6	104
22	Impact of growth conditions on transport behavior of E. coli. Journal of Environmental Monitoring, 2012, 14, 984.	2.1	13
23	Using a Phosphorus Loss Model to Evaluate and Improve Phosphorus Indices. Journal of Environmental Quality, 2012, 41, 1758-1766.	1.0	25
24	Biochar Pyrolyzed at Two Temperatures Affects <i>Escherichia coli</i> Transport through a Sandy Soil. Journal of Environmental Quality, 2012, 41, 124-133.	1.0	41
25	Escherichia coli Diversity in Livestock Manures and Agriculturally Impacted Stream Waters. Current Microbiology, 2011, 63, 439-449.	1.0	23
26	Using R2 to compare least-squares fit models: When it must fail. Chemometrics and Intelligent Laboratory Systems, 2011, 105, 220-222.	1.8	21
27	On the Significance of Properly Weighting Sorption Data for Least Squares Analysis. Soil Science Society of America Journal, 2010, 74, 670-679.	1.2	15
28	Correlating Transport Behavior with Cell Properties for Eight Porcine <i>Escherichia coli</i> Isolates. Environmental Science & Technology, 2010, 44, 5008-5014.	4.6	51
29	Least-Squares Analysis of Phosphorus Soil Sorption Data with Weighting from Variance Function Estimation: A Statistical Case for the Freundlich Isotherm. Environmental Science & Technology, 2010, 44, 5029-5034.	4.6	22
30	Sorption of Phosphorus from Swine, Dairy, and Poultry Manures. Communications in Soil Science and Plant Analysis, 2009, 40, 1106-1123.	0.6	13
31	Weighting Formulas for the Least-Squares Analysis of Binding Phenomena Data. Journal of Physical Chemistry B, 2009, 113, 6151-6157.	1.2	15
32	Revisiting a Statistical Shortcoming when Fitting the Langmuir Model to Sorption Data. Journal of Environmental Quality, 2008, 37, 1986-1992.	1.0	44
33	EFFECT OF LONG-TERM SWINE EFFLUENT APPLICATION ON SELECTED SOIL PROPERTIES. Soil Science, 2008, 173, 223-235.	0.9	45
34	On the Use of Linearized Langmuir Equations. Soil Science Society of America Journal, 2007, 71, 1796-1806.	1.2	242
35	Comparison of Escherichia coli and Campylobacter jejuni Transport in Saturated Porous Media. Journal of Environmental Quality, 2006, 35, 1018-1025.	1.0	63
36	Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. Journal of Contaminant Hydrology, 2001, 50, 287-305.	1.6	113

#	Article	IF	CITATIONS
37	Effect of Intra-Population Variability on the Long-Distance Transport of Bacteria. Ground Water, 2000, 38, 370-375.	0.7	59
38	A Method for Calculating Bacterial Deposition Coefficients Using the Fraction of Bacteria Recovered from Laboratory Columns. Environmental Science & amp; Technology, 1998, 32, 1329-1332.	4.6	41