Serena Stanga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7876855/publications.pdf

Version: 2024-02-01

516215 610482 25 609 16 24 citations g-index h-index papers 29 29 29 1062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 3719.	1.8	61
2	Homeodomain Interacting Protein Kinase 2: A Target for Alzheimer's Beta Amyloid Leading to Misfolded p53 and Inappropriate Cell Survival. PLoS ONE, 2010, 5, e10171.	1.1	50
3	The Expanding Universe of Neurotrophic Factors: Therapeutic Potential in Aging and Age-Associated Disorders. Current Pharmaceutical Design, 2010, 16, 698-717.	0.9	46
4	Unfolded p53 in the pathogenesis of Alzheimer's disease: is HIPK2 the link?. Aging, 2010, 2, 545-554.	1.4	44
5	Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Frontiers in Physiology, 2017, 8, 796.	1.3	40
6	A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology. Frontiers in Neurology, 2018, 9, 384.	1.1	33
7	Unfolded p53 in Blood as a Predictive Signature Signature of the Transition from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, 97-104.	1.2	31
8	Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic $\hat{Al^2}$ Oligomers in Cells. Frontiers in Aging Neuroscience, 2016, 8, 107.	1.7	28
9	APPâ€dependent glial cell lineâ€derived neurotrophic factor gene expression drives neuromuscular junction formation. FASEB Journal, 2016, 30, 1696-1711.	0.2	27
10	Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio, 2015, 5, 763-773.	1.0	25
11	Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. ENeuro, 2020, 7, ENEURO.0322-19.2020.	0.9	24
12	Pharmacogenetics and Pharmagenomics, Trends in Normal and Pathological Aging Studies: Focus on p53. Current Pharmaceutical Design, 2008, 14, 2665-2671.	0.9	23
13	Specificity of presenilinâ€1―and presenilinâ€2â€dependent γâ€secretases towards substrate processing. Journa of Cellular and Molecular Medicine, 2018, 22, 823-833.	1.6	23
14	Cachexia, a Systemic Disease beyond Muscle Atrophy. International Journal of Molecular Sciences, 2020, 21, 8592.	1.8	22
15	Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Frontiers in Pharmacology, 2020, 11, 592234.	1.6	20
16	Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. International Journal of Molecular Sciences, 2020, 21, 3928.	1.8	18
17	Characterization of Pterocarpus erinaceus kino extract and its gamma-secretase inhibitory properties. Journal of Ethnopharmacology, 2015, 163, 192-202.	2.0	17
18	How to Build and to Protect the Neuromuscular Junction: The Role of the Glial Cell Line-Derived Neurotrophic Factor. International Journal of Molecular Sciences, 2021, 22, 136.	1.8	16

#	Article	IF	CITATION
19	Searching for Predictive Blood Biomarkers: Misfolded p53 In Mild Cognitive Impairment. Current Alzheimer Research, 2012, 9, 1191-1197.	0.7	15
20	Deferasirox-Dependent Iron Chelation Enhances Mitochondrial Dysfunction and Restores p53 Signaling by Stabilization of p53 Family Members in Leukemic Cells. International Journal of Molecular Sciences, 2020, 21, 7674.	1.8	14
21	Gamma-Secretase Inhibitor Activity of a <i>Pterocarpus erinaceus</i> Extract. Neurodegenerative Diseases, 2014, 14, 39-51.	0.8	12
22	Recruitment of Casein Kinase 2 is Involved in A \hat{l}^2 PP Processing Following Cholinergic Stimulation. Journal of Alzheimer's Disease, 2010, 20, 1133-1141.	1.2	7
23	Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Frontiers in Neuroscience, 2020, 14, 586108.	1.4	6
24	Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic–neuronal crosstalk to counteract iron dyshomeostasis during aging. Scientific Reports, 2022, 12, .	1.6	4
25	APP-deficient neurons show a subtle differential gene expression pattern: impairment in the expression of the activity-dependent transcription factor, NPAS4 Frontiers in Neuroscience, 0, 11 , .	1.4	0