
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7876158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analytical applications of Raman spectroscopy. Talanta, 2008, 76, 1-8.	2.9	270
2	Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?. Chemical Physics Letters, 2005, 414, 271-275.	1.2	175
3	SERS on carbon chain segments: monitoring locally surface chemistry. Chemical Physics Letters, 2000, 321, 356-362.	1.2	164
4	SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surface Science, 2003, 532-535, 227-232.	0.8	158
5	Plasmonic nanoparticles in chemical analysis. RSC Advances, 2017, 7, 17559-17576.	1.7	133
6	Raman Study on the Structure of Cysteamine Monolayers on Silver. Langmuir, 1999, 15, 3162-3168.	1.6	97
7	Structures of monolayers formed from different HS?(CH2)2?X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2003, 34, 853-862.	1.2	97
8	Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra. Journal of Physical Chemistry B, 2011, 115, 4128-4137.	1.2	92
9	Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate. Applied Surface Science, 2011, 257, 8182-8189.	3.1	80
10	Surface-enhanced Raman scattering (SERS) at Copper(I) oxide. Journal of Raman Spectroscopy, 1998, 29, 431-435.	1.2	79
11	Raman spectroscopy of surfaces. Surface Science, 2009, 603, 1328-1334.	0.8	79
12	Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review. Vibrational Spectroscopy, 2005, 39, 200-213.	1.2	76
13	Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis and Photodynamic Therapy, 2019, 26, 162-178.	1.3	72
14	Chemisorption of 2-Mercaptoethanol on Silver, Copper, and Gold:Â Direct Raman Evidence of Acid-Induced Changes in Adsorption/Desorption Equilibria. Langmuir, 2003, 19, 3805-3813.	1.6	65
15	Fluctuations of surface-enhanced Raman spectra of CO adsorbed on gold substrates. Chemical Physics Letters, 2004, 383, 76-79.	1.2	62
16	Surface Enhanced Raman Spectroscopy for DNA Biosensors—How Far Are We?. Molecules, 2019, 24, 4423.	1.7	62
17	Anion-induced charge-transfer enhancement in SERS and SERRS spectra of Rhodamine 6G on a silver electrode: how important is it?. Journal of Raman Spectroscopy, 1998, 29, 681-685.	1.2	57
18	Chemisorption of Cysteamine on Silver Studied by Surface-Enhanced Raman Scattering. Langmuir, 2000, 16, 10236-10242.	1.6	52

#	Article	IF	CITATIONS
19	Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Frontiers in Chemistry, 2021, 9, 664134.	1.8	52
20	Molecular structure of cysteamine monolayers on silver and gold substrates. Surface Science, 2002, 502-503, 214-218.	0.8	49
21	Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering. Vibrational Spectroscopy, 1998, 16, 21-29.	1.2	47
22	In situ spectroelectrochemical surface-enhanced Raman scattering (SERS) investigations on composite Ag/TiO2-nanotubes/Ti substrates. Surface Science, 2009, 603, 2820-2824.	0.8	44
23	Electro-oxidation of o-aminophenol studied by cyclic voltammetry and surface enhanced Raman scattering (SERS). Journal of Electroanalytical Chemistry, 1993, 350, 177-187.	1.9	42
24	Vibrational Optical Activity of Cysteine in Aqueous Solution: A Comparison of Theoretical and Experimental Spectra. Journal of Physical Chemistry B, 2012, 116, 4976-4990.	1.2	42
25	Relationship between the nano-structure of GaN surfaces and SERS efficiency: Chasing hot-spots. Applied Surface Science, 2019, 466, 554-561.	3.1	42
26	Spectroelectrochemical and EPR determination of the number of electrons transferred in redox processes in electroactive polymers. Polyindole films. Electrochimica Acta, 1994, 39, 1365-1368.	2.6	41
27	Influence of electrostatically bound proteins on the structure of linkage monolayers: adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate. Vibrational Spectroscopy, 2003, 33, 197-204.	1.2	41
28	Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 45-51.	2.3	41
29	Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver:Â A Comparison with Monolayers of 3-Mercaptopropionic Acid. Langmuir, 2002, 18, 4741-4747.	1.6	40
30	Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Frontiers in Chemistry, 2019, 7, 410.	1.8	40
31	New strategy for the gene mutation identification using surface enhanced Raman spectroscopy (SERS). Biosensors and Bioelectronics, 2019, 132, 326-332.	5.3	40
32	The chemical effect in surface enhanced Raman scattering (SERS) for piperidine adsorbed on a silver electrode. Surface Science, 1996, 368, 396-400.	0.8	38
33	Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2001, 32, 345-350.	1.2	38
34	Surfaceâ€enhanced Raman scattering investigations on silver nanoparticles deposited on alumina and titania nanotubes: influence of the substrate material on surfaceâ€enhanced Raman scattering activity of Ag nanoparticles. Journal of Raman Spectroscopy, 2012, 43, 1360-1366.	1.2	38
35	The role of Ag particles deposited on TiO2 or Al2O3 self-organized nanoporous layers in their behavior as SERS-active and biomedical substrates. Materials Chemistry and Physics, 2013, 139, 55-65.	2.0	38
36	The use of Surface Enhanced Raman Scattering (SERS) to probe the interaction of imidazole with the silver electrode surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 309, 251-261.	0.3	36

#	Article	IF	CITATIONS
37	Raman study on the structure of 3-mercaptopropionic acid monolayers on silver. Surface Science, 2002, 502-503, 219-223.	0.8	36
38	Raman investigations of TiO ₂ nanotube substrates covered with thin Ag or Cu deposits. Journal of Raman Spectroscopy, 2009, 40, 1652-1656.	1.2	36
39	Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 178-183.	2.3	36
40	Detection of circulating tumor cells in blood by shell-isolated nanoparticle – enhanced Raman spectroscopy (SHINERS) in microfluidic device. Scientific Reports, 2019, 9, 9267.	1.6	36
41	Influence of anions on formation and electroacitivity of poly-2,5-dimethoxyaniline. Synthetic Metals, 2000, 108, 111-119.	2.1	35
42	Circularly polarized component in surface-enhanced Raman spectra. Chemical Physics Letters, 2010, 496, 86-90.	1.2	35
43	Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate. Vibrational Spectroscopy, 2011, 55, 38-43.	1.2	34
44	Silica-Protected Hollow Silver and Gold Nanoparticles: New Material for Raman Analysis of Surfaces. Journal of Physical Chemistry C, 2015, 119, 20030-20038.	1.5	34
45	Light-induced transformation of citrate-stabilized silver nanoparticles: Photochemical method of increase of SERS activity of silver colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 41-48.	2.3	33
46	Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. Journal of Physical Chemistry C, 2016, 120, 1841-1846.	1.5	33
47	Plasmonic nanoparticles for environmental analysis. Environmental Chemistry Letters, 2020, 18, 529-542.	8.3	33
48	Silica-Covered Silver and Gold Nanoresonators for Raman Analysis of Surfaces of Various Materials. Journal of Physical Chemistry C, 2012, 116, 16167-16174.	1.5	31
49	Surface-enhanced Raman scattering (SERS) on copper electrodeposited under nonequilibrium conditions. Journal of Molecular Structure, 1999, 482-483, 245-248.	1.8	30
50	Fluctuations of Raman spectra of hydrogenated amorphous carbon deposited on electrochemically-roughened silver. Chemical Physics Letters, 2006, 427, 206-209.	1.2	30
51	Influence of aliphatic spacer group on adsorption mechanisms of phosphonate derivatives of I-phenylalanine: Surface-enhanced Raman, Raman, and infrared studies. Surface Science, 2007, 601, 4586-4597.	0.8	30
52	Adsorption mechanism of physiologically active l-phenylalanine phosphonodipeptide analogues: Comparison of colloidal silver and macroscopic silver substrates. Surface Science, 2007, 601, 4971-4983.	0.8	29
53	Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol. Applied Surface Science, 2016, 388, 624-630.	3.1	29
54	Structure of Monolayers Formed from Neurotensin and Its Single-Site Mutants: Vibrational Spectroscopic Studies. Journal of Physical Chemistry B, 2011, 115, 6709-6721.	1.2	28

#	Article	IF	CITATIONS
55	Interaction of 2-mercaptoethanesulfonate monolayers on silver with sodium cations. Journal of Raman Spectroscopy, 2002, 33, 796-800.	1.2	27
56	Surfaceâ€enhanced Raman scattering study of monolayers formed from mixtures of 4–mercaptobenzoic acid and various aromatic mercaptoâ€derivative bases. Journal of Raman Spectroscopy, 2009, 40, 2037-2043.	1.2	27
57	Cubic Silver Nanoparticles Fixed on TiO2 Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering. Materials, 2019, 12, 3373.	1.3	27
58	Intracellular pH – Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy – A review. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119410.	2.0	27
59	Silver Nanoparticles with Many Sharp Apexes and Edges as Efficient Nanoresonators for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 12383-12391.	1.5	25
60	Modification of surface activity of Cu-based amorphous alloys by chemical processes of metal degradation. Applied Catalysis A: General, 2002, 235, 157-170.	2.2	23
61	TiO2 and Al2O3 nanoporous oxide layers decorated with silver nanoparticles—active substrates for SERS measurements. Journal of Solid State Electrochemistry, 2014, 18, 3099-3109.	1.2	23
62	MnO2-protected silver nanoparticles: New electromagnetic nanoresonators for Raman analysis of surfaces in basis environment. Applied Surface Science, 2016, 388, 704-709.	3.1	23
63	Dipyramidal-Au@SiO2 nanostructures: New efficient electromagnetic nanoresonators for Raman spectroscopy analysis of surfaces. Applied Surface Science, 2018, 456, 932-940.	3.1	22
64	Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization. Nanomaterials, 2021, 11, 75.	1.9	22
65	Raman studies on the coverage integrity of monolayers formed on silver from various ω-functionalised alkanethiols. Vibrational Spectroscopy, 2006, 41, 83-89.	1.2	20
66	Some aspects of SERS temporal fluctuations: analysis of the most intense spectra of hydrogenated amorphous carbon deposited on silver. Journal of Raman Spectroscopy, 2007, 38, 1494-1499.	1.2	20
67	SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments. Molecules, 2019, 24, 3921.	1.7	20
68	Temporal evolution of Raman intensities on surface-enhanced Raman scattering active copper and gold electrodes at negative potentials. Vibrational Spectroscopy, 1996, 10, 335-339.	1.2	19
69	Trapping of Cu2+ and VO2+ ions in conducting polymer matrices – EPR studies. Journal of Molecular Structure, 1999, 482-483, 291-294.	1.8	19
70	Surface-Enhanced Raman Scattering Studies on the Interaction of Phosphonate Derivatives of Imidazole, Thiazole, and Pyridine with a Silver Electrode in Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 10035-10042.	1.2	19
71	Fourier Transform Infrared and Raman and Surface-Enhanced Raman Spectroscopy Studies of a Novel Group of Boron Analogues of Aminophosphonic Acids. Journal of Physical Chemistry A, 2012, 116, 10004-10014.	1.1	19
72	Ag/ZrO2-NT/Zr hybrid material: A new platform for SERS measurements. Vibrational Spectroscopy, 2014, 71, 85-90.	1.2	19

#	Article	IF	CITATIONS
73	Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 1-7.	2.0	19
74	The CT enhancement in SERS on gold electrodes. How important is it?. Chemical Physics Letters, 1994, 222, 555-558.	1.2	18
75	Charge-transfer contribution to surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering of dyes at silver and gold electrodes. Chemical Physics Letters, 1996, 253, 246-250.	1.2	18
76	Effect of electrochemical pretreatment on SERS and catalytic activity of Cu–Zr amorphous alloys. Applied Catalysis A: General, 1999, 181, 123-130.	2.2	17
77	Raman study on the structure of adlayers formed on silver from mixtures of 2-aminoethanethiol and 3-mercaptopropionic acid. Journal of Raman Spectroscopy, 2005, 36, 1040-1046.	1.2	17
78	Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces. RSC Advances, 2019, 9, 18609-18618.	1.7	17
79	Star-shaped plasmonic nanostructures: New, simply synthetized materials for Raman analysis of surfaces. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117469.	2.0	17
80	Surface-enhanced Raman scattering (SERS) on modified amorphous Cu–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 235-239.	2.6	16
81	Electrochemical modification of Cu–Zr amorphous alloys for catalysts. Electrochimica Acta, 2000, 45, 3295-3304.	2.6	16
82	Role of O2in Inducing Intensive Fluctuations of Surface-Enhanced Raman Scattering Spectra. Journal of Physical Chemistry B, 2006, 110, 12610-12615.	1.2	16
83	Structure and Binding of Specifically Mutated Neurotensin Fragments on a Silver Substrate: Vibrational Studies. Journal of Physical Chemistry B, 2011, 115, 7097-7108.	1.2	16
84	Raman, Surface-Enhanced Raman, and Density Functional Theory Characterization of (Diphenylphosphoryl)(pyridin-2-, -3-, and -4-yl)methanol. Journal of Physical Chemistry A, 2014, 118, 5614-5625.	1.1	16
85	Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity. Applied Surface Science, 2015, 357, 1736-1742.	3.1	16
86	Relative SERS enhancement factors for pyridine adsorbed on a silver electrode. The chemical effect in SERS as a product of charge-transfer and active-site mechanisms. Journal of Raman Spectroscopy, 1994, 25, 153-158.	1.2	15
87	Solvent trapping during the self-assembly of octadecanethiol monolayer on roughened gold electrodes from surface-enhanced Raman scattering studies. Journal of Electroanalytical Chemistry, 1998, 443, 5-7.	1.9	15
88	Local characterisation of inhomogeneous Cu surfaces by surface-enhanced Raman scattering. Surface Science, 2002, 507-510, 441-446.	0.8	15
89	Light-induced growth of various silver seed nanoparticles: A simple method of synthesis of different silver colloidal SERS substrates. Chemical Physics Letters, 2015, 625, 84-90.	1.2	15
90	Influence of the silver deposition method on the activity of platforms for chemometric surface-enhanced Raman scattering measurements: Silver films on ZrO 2 nanopore arrays. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 124-129.	2.0	14

#	Article	IF	CITATIONS
91	Immobilization of Cubic Silver Plasmonic Nanoparticles on TiO ₂ Nanotubes, Reducing the Coffee Ring Effect in Surface-Enhanced Raman Spectroscopy Applications. ACS Omega, 2020, 5, 13963-13972.	1.6	14
92	Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 277, 121266.	2.0	14
93	Raman study on methanol partial oxidation and oxidative steam reforming over copper. Surface Science, 2004, 566-568, 1007-1011.	0.8	13
94	Place-exchange reactions of thiols on electrochemically roughened SERS-active silver. Vibrational Spectroscopy, 2005, 39, 257-261.	1.2	13
95	Monolayers of sulfur-containing molecules at metal surfaces as studied using SERS: 3, 3′-thiodipropionic acid and 3-mercaptopropionic acid adsorbed on silver and copper. Journal of Raman Spectroscopy, 2005, 36, 709-714.	1.2	13
96	Formation of bifunctional conglomerates composed of magnetic Î ³ -Fe2O3 nanoparticles and various noble metal nanostructures. Applied Surface Science, 2019, 470, 970-978.	3.1	13
97	Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides. Applied Surface Science, 2018, 427, 334-339.	3.1	13
98	Formation and selected catalytic properties of ruthenium, rhodium, osmium and iridium nanoparticles. RSC Advances, 2022, 12, 2123-2144.	1.7	13
99	Poly-1,8-Diaminonaphthalene: Sensor for Heavy Metal Ions. Materials Science Forum, 1995, 191, 247-250.	0.3	12
100	Zirconium(IV) oxide: New coating material for nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 480-485.	2.0	12
101	Comparison of the efficiency of generation of Raman radiation by various Raman reporters connected via DNA linkers to different plasmonic nano-structures. Vibrational Spectroscopy, 2019, 101, 34-39.	1.2	12
102	Excitation profiles versus potential profiles in the determination of the charge-transfer contribution to SERS of pyridine on a silver electrode. Journal of Raman Spectroscopy, 1995, 26, 955-958.	1.2	11
103	Effect of ageing in air on morphology and surface-enhanced Raman scattering (SERS) activity of Cu-based amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 326, 364-369.	2.6	11
104	Silver–platinum core–shell nanoparticles for surface-enhanced Raman spectroscopy. Vibrational Spectroscopy, 2011, 57, 261-269.	1.2	11
105	Fe3O4-protected gold nanoparticles: New plasmonic-magnetic nanomaterial for Raman analysis of surfaces. Applied Surface Science, 2021, 562, 150220.	3.1	11
106	SERS and resonance Raman studies of p-aminoazobenzene on gold and silver electrodes. Journal of Electroanalytical Chemistry, 1995, 385, 177-182.	1.9	10
107	Modification of surface activity of Cu–Zr amorphous alloys and Cu metal by electrochemical methods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 227-234.	2.6	10
108	In situ SERS studies on the adsorption of tyrosinase on bare and alkanethiol-modified silver substrates. Vibrational Spectroscopy, 2008, 46, 34-38.	1.2	10

ANDRZEJ KUDELSKI

#	Article	IF	CITATIONS
109	SERS on modified amorphous Cuî—,Zr alloys. Chemical Physics Letters, 1997, 268, 481-484.	1.2	9
110	Potential dependence of a number of the â€~residual' spins in the electronically conducting polymer matrix. Synthetic Metals, 1998, 95, 87-91.	2.1	9
111	Adsorbed states of substituted αâ€aminophosphinic acids on a silver electrode surface: comparison with a colloidal silver substrate. Journal of Raman Spectroscopy, 2009, 40, 1578-1584.	1.2	9
112	The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties. Molecules, 2022, 27, 3081.	1.7	9
113	Influence of photochemical effects on irreversible loss of "active sites―on SERS active silver electrode. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 573-578.	2.0	8
114	Electrochemical activity of poly(N-vinylcarbazole) films in acetonitrile solution and in acetonitrile + water mixtures Correlation between spectroelectrochemical and EPR results. Journal of Electroanalytical Chemistry, 1996, 403, 125-132.	1.9	8
115	Adsorption of neurotensinâ€family peptides on SERSâ€active Ag substrates. Journal of Raman Spectroscopy, 2012, 43, 1196-1203.	1.2	8
116	Vibrational and Theoretical Studies of the Structure and Adsorption Mode of <i>m</i> -Nitrophenyl α-Guanidinomethylphosphonic Acid Analogues on Silver Surfaces. Journal of Physical Chemistry A, 2013, 117, 4963-4972.	1.1	8
117	Ordered zirconium dioxide nanotubes covered with an evaporated gold layer as reversible, chemically inert and very efficient substrates for surface-enhanced Raman scattering (SERS) measurement. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121183.	2.0	8
118	Hints for electrosynthesis of poly(3-octylthiophene). Synthetic Metals, 1999, 101, 35-36.	2.1	7
119	Raman Characterization of Monolayers Formed from Mixtures of Sodium 2-Mercaptoethanesulfonate and Various Aromatic Mercapto-Derivative Bases. Journal of Physical Chemistry B, 2010, 114, 5180-5189.	1.2	7
120	B ₂ bradykinin receptor antagonists: adsorption mechanism on electrochemically roughened Ag substrate. Journal of Raman Spectroscopy, 2013, 44, 205-211.	1.2	7
121	Vibrational characterization of α-aminophosphinic acid derivatives of pyridine: DFT, Raman and SERS spectroscopy studies. Vibrational Spectroscopy, 2016, 83, 115-125.	1.2	7
122	Photo-assembly of plasmonic nanoparticles: methods and applications. RSC Advances, 2021, 11, 2575-2595.	1.7	7
123	The use of SERS to probe the adsorption and oxidation of o-aminophenol on the silver electrode. Journal of Molecular Structure, 1992, 275, 145-150.	1.8	6
124	The mechanism of electrodeposition and molecular structure of poly(p-aminoazobenzene). Synthetic Metals, 1995, 72, 201-207.	2.1	6
125	An SERS investigation of CO intermediate adsorption on a modified Cu-Zr amorphous alloy during CO2 reduction. Russian Journal of Electrochemistry, 2000, 36, 1186-1188.	0.3	6
126	Voltammetry of undiluted redox systems backed by in-situ Raman spectroscopy. Evidence for strong accumulation of ions in the diffusion layer at microelectrode surface. Electrochemistry Communications, 2003, 5, 412-415.	2.3	6

ANDRZEJ KUDELSKI

#	Article	IF	CITATIONS
127	Preparation of silver hollow nanostructures by plasmon-driven transformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 102-108.	2.3	5
128	How Surface-Enhanced Raman Spectroscopy Could Contribute to Medical Diagnoses. Chemosensors, 2022, 10, 190.	1.8	5
129	Local monitoring of surface chemistry with Raman spectroscopy. Journal of Solid State Electrochemistry, 2009, 13, 225-230.	1.2	4
130	Adsorption of CO on various M@Pt core–shell nanoparticles: Surface-enhanced infrared absorption and DFT studies. Vibrational Spectroscopy, 2014, 75, 11-18.	1.2	4
131	Influence of amine and thiol modifications at the 3′ ends of single stranded DNA molecules on their adsorption on gold surface and the efficiency of their hybridization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 31-39.	2.0	4
132	Adsorption of (Phe-h5)/(Phe-d5)-substituted peptides from neurotensin family on the nanostructured surfaces of Ag and Cu: SERS studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118748.	2.0	4
133	Titanium (IV) Oxide Nanotubes in Design of Active SERS Substrates for High Sensitivity Analytical Applications: Effect of Geometrical Factors in Nanotubes and in Ag-n Deposits. , 2018, , .		3
134	Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips. Molecules, 2021, 26, 4246.	1.7	3
135	Nanofunctionalization of Additively Manufactured Titanium Substrates for Surface-Enhanced Raman Spectroscopy Measurements. Materials, 2022, 15, 3108.	1.3	3
136	Surface-enhanced Raman scattering measurements on silver nanoparticles covered with differently formed platinum films. Vibrational Spectroscopy, 2013, 68, 153-157.	1.2	2
137	Photochemical synthesis of different silver nanostructures. , 2015, , .		2
138	Surface-enhanced Raman scattering (SERS) at Copper(I) oxide. , 1998, 29, 431.		2
139	A few molecules surface-enhanced Raman scattering studies on nickel-modified silver substrates. Chemical Physics Letters, 2008, 457, 434-438.	1.2	1
140	Nanosensors for Environmental Analysis Based on Plasmonic Nanoparticles. Environmental Chemistry for A Sustainable World, 2019, , 255-287.	0.3	1
141	Electrochemical Preparation of Nanoresonators. , 2016, , 47-69.		1
142	Commemorative Issue in Honor of Professor Gerhard Ertl on the Occasion of His 85th Birthday. Catalysts, 2022, 12, 624.	1.6	1
143	Protected hollow metal nanoresonators for Raman analysis of surfaces. , 2015, , .		0

144 Electrochemical Preparation of Nanoresonators. , 2015, , 1-20.

0

# /	Article	IF	CITATIONS
145	The role of oxygen in plasmon-driven transformation of silver nanoparticles. Applied Surface Science, 2016, 388, 710-715.	3.1	0

146 Shell-isolated nanoparticle-enhanced Raman spectroscopy: a review. , 2020, , 387-414.

0