Nicholas Fallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7875711/publications.pdf

Version: 2024-02-01

623188 642321 32 635 14 23 citations g-index h-index papers 33 33 33 887 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systematic Review of the Effectiveness of Machine Learning Algorithms for Classifying Pain Intensity, Phenotype or Treatment Outcomes Using Electroencephalogram Data. Journal of Pain, 2022, 23, 349-369.	0.7	8
2	Neural correlates of texture perception during active touch. Behavioural Brain Research, 2022, 429, 113908.	1.2	6
3	Adverse effects of COVID-19-related lockdown on pain, physical activity and psychological well-being in people with chronic pain. British Journal of Pain, 2021, 15, 357-368.	0.7	62
4	Inhibition of cortical somatosensory processing during and after low frequency peripheral nerve stimulation in humans. Clinical Neurophysiology, 2021, 132, 1481-1495.	0.7	2
5	Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy. Human Brain Mapping, 2021, 42, 5648-5664.	1.9	20
6	Neural underpinnings of value-guided choice during auction tasks: An eye-fixation related potentials study. Neurolmage, 2020, 204, 116213.	2.1	8
7	Shared and distinct functional networks for empathy and pain processing: a systematic review and meta-analysis of fMRI studies. Social Cognitive and Affective Neuroscience, 2020, 15, 709-723.	1.5	59
8	A Systematic Review and Activation Likelihood Estimation Meta-Analysis of fMRI Studies on Sweet Taste in Humans. Journal of Nutrition, 2020, 150, 1619-1630.	1.3	13
9	A Behavioral and Electrophysiological Investigation of Effects of Visual Congruence on Olfactory Sensitivity During Habituation to Prolonged Odors. Chemical Senses, 2020, 45, 845-854.	1.1	5
10	Where Is Itch Represented in the Brain, and HowÂDoes it Differ from Pain? An Activation Likelihood Estimation Meta-Analysis of Experimentally-Induced Itch. Journal of Investigative Dermatology, 2019, 139, 2245-2248.e3.	0.3	11
11	Restingâ€state functional brain networks in adults with a new diagnosis of focal epilepsy. Brain and Behavior, 2019, 9, e01168.	1.0	17
12	Simultaneous odour-face presentation strengthens hedonic evaluations and event-related potential responses influenced by unpleasant odour. Neuroscience Letters, 2018, 672, 22-27.	1.0	18
13	Neural Mechanisms of Attentional Switching Between Pain and a Visual Illusion Task: A Laser Evoked Potential Study. Brain Topography, 2018, 31, 430-446.	0.8	4
14	Altered theta oscillations in resting <scp>EEG</scp> of fibromyalgia syndrome patients. European Journal of Pain, 2018, 22, 49-57.	1.4	70
15	Tracking Economic Value of Products in Natural Settings: A Wireless EEG Study. Frontiers in Neuroscience, 2018, 12, 910.	1.4	14
16	Brain Responses to Emotional Faces in Natural Settings: A Wireless Mobile EEG Recording Study. Frontiers in Psychology, 2018, 9, 2003.	1.1	30
17	Attentional modulation of desensitization to odor. Attention, Perception, and Psychophysics, 2018, 80, 1064-1071.	0.7	6
18	Neural correlates of economic value and valuation context: an event-related potential study. Journal of Neurophysiology, 2018, 119, 1924-1933.	0.9	21

#	Article	IF	CITATIONS
19	Effects of loss aversion on neural responses to loss outcomes: An event-related potential study. Biological Psychology, 2017, 126, 30-40.	1.1	12
20	Pleasant and unpleasant odour-face combinations influence face and odour perception: An event-related potential study. Behavioural Brain Research, 2017, 333, 304-313.	1.2	23
21	Mapping multidimensional pain experience onto electrophysiological responses to noxious laser heat stimuli. Neurolmage, 2016, 125, 244-255.	2.1	3
22	Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients. PLoS ONE, 2016, 11, e0159198.	1.1	54
23	Data to support observation of late and ultra-late latency components of cortical laser evoked potentials. Data in Brief, 2015, 5, 1031-1034.	0.5	O
24	Pleasant and Unpleasant Odors Influence Hedonic Evaluations of Human Faces: An Event-Related Potential Study. Frontiers in Human Neuroscience, 2015, 9, 661.	1.0	28
25	Unpleasant odors increase aversion to monetary losses. Biological Psychology, 2015, 107, 1-9.	1.1	13
26	Altered Cortical Processing of Observed Pain in Patients With Fibromyalgia Syndrome. Journal of Pain, 2015, 16, 717-726.	0.7	18
27	Pain Catastrophising Affects Cortical Responses to Viewing Pain in Others. PLoS ONE, 2015, 10, e0133504.	1.1	8
28	Modulation of pain by emotional sounds: A laserâ€evoked potential study. European Journal of Pain, 2013, 17, 324-335.	1.4	15
29	Structural alterations in brainstem of fibromyalgia syndrome patients correlate with sensitivity to mechanical pressure. Neurolmage: Clinical, 2013, 3, 163-170.	1.4	29
30	Ipsilateral cortical activation in fibromyalgia patients during brushing correlates with symptom severity. Clinical Neurophysiology, 2013, 124, 154-163.	0.7	19
31	Emotional modulation of experimental pain: a source imaging study of laser evoked potentials. Frontiers in Human Neuroscience, 2013, 7, 552.	1.0	25
32	Effects of motor response expectancy on cortical processing of noxious laser stimuli. Behavioural Brain Research, 2012, 227, 215-223.	1.2	9