Michael S Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7875232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. , 2019, 7, 199.		27
2	Improving cancer immunotherapy through nanotechnology. Nature Reviews Cancer, 2019, 19, 587-602.	28.4	426
3	Integrating Nanotechnology into Cancer Care. ACS Nano, 2019, 13, 7370-7376.	14.6	102
4	The Immune Microenvironment in Hormone Receptor–Positive Breast Cancer Before and After Preoperative Chemotherapy. Clinical Cancer Research, 2019, 25, 4644-4655.	7.0	76
5	CRISPR-Mediated Editing of the B Cell Receptor in Primary Human B Cells. IScience, 2019, 12, 369-378.	4.1	41
6	Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Science Translational Medicine, 2018, 10, .	12.4	227
7	Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 2018, 361, .	12.6	893
8	DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discovery, 2017, 7, 675-693.	9.4	519
9	Surface modulation of polymeric nanocarriers enhances the stability and delivery of proteins and small molecules. Nanomedicine, 2017, 12, 729-743.	3.3	6
10	T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nature Communications, 2017, 8, 1747.	12.8	336
11	Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Science Translational Medicine, 2016, 8, 361ra138.	12.4	656
12	Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunology, Immunotherapy, 2016, 65, 787-796.	4.2	37
13	Cosilencing of <i>PKM-2</i> and <i>MDR-1</i> Sensitizes Multidrug-Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer. Molecular Cancer Therapeutics, 2015, 14, 1521-1531.	4.1	39
14	The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1 â^'/â^' murine model of ovarian cancer. Biochemical and Biophysical Research Communications, 2015, 463, 551-556.	2.1	133
15	Epithelial PD-L2 Expression Marks Barrett's Esophagus and Esophageal Adenocarcinoma. Cancer Immunology Research, 2015, 3, 1123-1129.	3.4	127
16	Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy. Cell, 2015, 161, 201-204.	28.9	241
17	Decitabine Enhances Lymphocyte Migration and Function and Synergizes with CTLA-4 Blockade in a Murine Ovarian Cancer Model. Cancer Immunology Research, 2015, 3, 1030-1041.	3.4	135
18	Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Advanced Drug Delivery Reviews, 2015, 91, 38-51.	13.7	55

2

#	Article	IF	CITATIONS
19	Transcription Factor/microRNA Axis Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1. Journal of Investigative Dermatology, 2014, 134, 441-451.	0.7	95
20	siRNA Delivery for the treatment of ovarian cancer. Methods, 2013, 63, 95-100.	3.8	18
21	Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine, 2013, 8, 299-308.	3.3	47
22	Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. Journal of Experimental Medicine, 2012, 209, 217-224.	8.5	204
23	Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 745-750.	7.1	90
24	Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis. Proceedings of the United States of America, 2009, 106, 3426-3430.	7.1	118
25	Development of Lipidoid–siRNA Formulations for Systemic Delivery to the Liver. Molecular Therapy, 2009, 17, 872-879.	8.2	312
26	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 2008, 26, 561-569.	17.5	1,076
27	Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature, 2007, 449, 745-747.	27.8	145