Marc Schoenauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7875201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-objective Genetic Programming forÂExplainable Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 278-293.	1.0	3
2	Paradiseo: from a modular framework for evolutionary computation to the automated design of metaheuristics. , 2021, , .		12
3	Neural networks for power flow: Graph neural solver. Electric Power Systems Research, 2020, 189, 106547.	2.1	33
4	The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities. Artificial Life, 2020, 26, 274-306.	1.0	88
5	On the Behaviour of Differential Evolution for Problems with Dynamic Linear Constraints. , 2019, , .		5
6	Promoting semantic diversity in multi-objective genetic programming. , 2019, , .		11
7	Optimizing coverage of simulated driving scenarios for the autonomous vehicle. , 2019, , .		4
8	Algorithm Selector and Prescheduler in the ICON Challenge. Studies in Computational Intelligence, 2019, , 203-219.	0.7	2
9	An artificial immune system for offline isolated handwritten arabic character recognition. Evolving Systems, 2018, 9, 25-41.	2.4	25
10	Optimization of computational budget for power system risk assessment. , 2018, , .		6
11	Anticipating contingengies in power grids using fast neural net screening. , 2018, , .		5
12	Bio-inspired approaches to anomaly and intrusion detection. , 2018, , .		1
13	On the Use of Dynamic GP Fitness Cases in Static and Dynamic Optimisation Problems. Lecture Notes in Computer Science, 2018, , 72-87.	1.0	2
14	Per instance algorithm configuration of CMA-ES with limited budget. , 2017, , .		57
15	Progressively adding objectives. , 2017, , .		2
16	Dynamic GP fitness cases in static and dynamic optimisation problems. , 2017, , .		5
17	Demand-Side Management: Optimising Through Differential Evolution Plug-in Electric Vehicles to Partially Fulfil Load Demand. Studies in Computational Intelligence, 2017, , 155-174.	0.7	3
18	On the Use of Semantics in Multi-objective Genetic Programming. Lecture Notes in Computer Science, 2016, , 353-363.	1.0	10

MARC SCHOENAUER

#	Article	IF	CITATIONS
19	VorAIS. , 2016, , .		4
20	Feature Based Algorithm Configuration: A Case Study with Differential Evolution. Lecture Notes in Computer Science, 2016, , 156-166.	1.0	17
21	Anomaly Detection with the Voronoi Diagram Evolutionary Algorithm. Lecture Notes in Computer Science, 2016, , 697-706.	1.0	5
22	Surrogate Assisted Feature Computation for Continuous Problems. Lecture Notes in Computer Science, 2016, , 17-31.	1.0	11
23	Greedy Semantic Local Search for Small Solutions. Lecture Notes in Computer Science, 2016, , 149-162.	1.0	0
24	Greedy Semantic Local Search for Small Solutions. , 2015, , .		3
25	Memetic Semantic Genetic Programming. , 2015, , .		23
26	Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve. Lecture Notes in Computer Science, 2015, , 262-267.	1.0	1
27	Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES. Lecture Notes in Computer Science, 2014, , 70-79.	1.0	8
28	Multiobjective tactical planning under uncertainty for air traffic flow and capacity management. , 2013, , .		2
29	Guest editorial: special issue – revised selected papers of the LION 6 conference. Annals of Mathematics and Artificial Intelligence, 2013, 69, 149-150.	0.9	Ο
30	Sustainable cooperative coevolution with a multi-armed bandit. , 2013, , .		5
31	Intensive surrogate model exploitation in self-adaptive surrogate-assisted cma-es (saacm-es). , 2013, , .		28
32	Multiobjective optimization for reducing delays and congestion in air traffic management. , 2013, , .		1
33	Bi-population CMA-ES agorithms with surrogate models and line searches. , 2013, , .		31
34	Multi-objective AI Planning: Comparing Aggregation and Pareto Approaches. Lecture Notes in Computer Science, 2013, , 202-213.	1.0	2
35	Bandit-Based Search for Constraint Programming. Lecture Notes in Computer Science, 2013, , 464-480.	1.0	14
36	Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop Problem. Lecture Notes in Computer Science, 2013, , 315-320.	1.0	5

1

#	Article	IF	CITATIONS
37	Black-box optimization benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 noiseless testbed. , 2012, , .		7
38	Editorial for the Special Issue on Automated Design and Assessment of Heuristic Search Methods. Evolutionary Computation, 2012, 20, 161-163.	2.3	1
39	Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed. , 2012, , .		10
40	Asynchronous master/slave moeas and heterogeneous evaluation costs. , 2012, , .		8
41	Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed. , 2012, , .		2
42	Benchmarking of Continuous Black Box Optimization Algorithms. Evolutionary Computation, 2012, 20, 481-481.	2.3	9
43	Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy. , 2012, , .		55
44	A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize. Lecture Notes in Computer Science, 2012, , 37-48.	1.0	8
45	The grand challenge of computer Go. Communications of the ACM, 2012, 55, 106-113.	3.3	125
46	Alternative Restart Strategies for CMA-ES. Lecture Notes in Computer Science, 2012, , 296-305.	1.0	23
47	APRIL: Active Preference Learning-Based Reinforcement Learning. Lecture Notes in Computer Science, 2012, , 116-131.	1.0	29
48	Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling. Lecture Notes in Computer Science, 2012, , 160-174.	1.0	7
49	Learn-and-Optimize: A Parameter Tuning Framework for Evolutionary Al Planning. Lecture Notes in Computer Science, 2012, , 145-155.	1.0	0
50	Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs. , 2011, , .		16
51	Instance-based parameter tuning for evolutionary AI planning. , 2011, , .		0
52	Robustness and the Halting Problem for Multicellular Artificial Ontogeny. IEEE Transactions on Evolutionary Computation, 2011, 15, 387-404.	7.5	20
53	Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing Journal, 2011, 11, 5755-5769.	4.1	102
_			

54 Simple tools for multimodal optimization., 2011,,.

#	Article	IF	CITATIONS
55	Adaptive coordinate descent. , 2011, , .		28
56	Optimizing architectural and structural aspects of buildings towards higher energy efficiency. , 2011, , .		7
57	Instance-based parameter tuning for evolutionary AI planning. , 2011, , .		2
58	On-Board Evolutionary Algorithm and Off-Line Rule Discovery for Column Formation in Swarm Robotics. , 2011, , .		0
59	Adaptive Operator Selection and Management in Evolutionary Algorithms. , 2011, , 161-189.		3
60	Preference-Based Policy Learning. Lecture Notes in Computer Science, 2011, , 12-27.	1.0	30
61	Comparison-Based Optimizers Need Comparison-Based Surrogates. , 2010, , 364-373.		58
62	Analyzing bandit-based adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence, 2010, 60, 25-64.	0.9	112
63	On the generality of parameter tuning in evolutionary planning. , 2010, , .		7
64	Fitness-AUC bandit adaptive strategy selection vs. the probability matching one within differential evolution. , 2010, , .		10
65	A pareto-compliant surrogate approach for multiobjective optimization. , 2010, , .		1
66	Toward comparison-based adaptive operator selection. , 2010, , .		29
67	A mono surrogate for multiobjective optimization. , 2010, , .		60
68	Cellular Automata with Irregular Structure: A Compact Representation. , 2010, , .		1
69	On the Benefit of Sub-optimality within the Divide-and-Evolve Scheme. Lecture Notes in Computer Science, 2010, , 23-34.	1.0	7
70	Comparison-Based Adaptive Strategy Selection with Bandits in Differential Evolution. , 2010, , 194-203.		14
71	Open-Ended Evolutionary Robotics: An Information Theoretic Approach. , 2010, , 334-343.		8
72	Dominance-Based Pareto-Surrogate for Multi-Objective Optimization. Lecture Notes in Computer Science, 2010, , 230-239.	1.0	26

4

#	Article	IF	CITATIONS
73	Bringing evolutionary computation to industrial applications with guide. , 2009, , .		9
74	Editorial Introduction. Evolutionary Computation, 2009, 17, i-ii.	2.3	0
75	Analysis of adaptive operator selection techniques on the royal road and long k-path problems. , 2009, , .		27
76	The impact of network topology on self-organizing maps. , 2009, , .		9
77	Evolving specific network statistical properties using a gene regulatory network model. , 2009, , .		4
78	On the evolution of scale-free topologies with a gene regulatory network model. BioSystems, 2009, 98, 137-148.	0.9	15
79	Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection. , 2009, , .		26
80	A Statistical Learning Perspective of Genetic Programming. Lecture Notes in Computer Science, 2009, , 327-338.	1.0	11
81	Validation of a Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm. Lecture Notes in Computer Science, 2009, , 176-190.	1.0	8
82	Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms. Lecture Notes in Computer Science, 2009, , 176-190.	1.0	31
83	Adaptive operator selection with dynamic multi-armed bandits. , 2008, , .		83
84	Arti?cial Ontogeny for Truss Structure Design. , 2008, , .		3
85	Evolving Scale-Free Topologies using a Gene Regulatory Network Model. , 2008, , .		2
86	Automatic wave-equation migration velocity inversion using multiobjective evolutionary algorithms. Geophysics, 2008, 73, VE61-VE73.	1.4	17
87	Extreme Value Based Adaptive Operator Selection. Lecture Notes in Computer Science, 2008, , 175-184.	1.0	62
88	Supervised and Evolutionary Learning of Echo State Networks. Lecture Notes in Computer Science, 2008, , 215-224.	1.0	25
89	Robust multi-cellular developmental design. , 2007, , .		12

90 Autonomous selection in evolutionary algorithms. , 2007, , .

6

#	Article	IF	CITATIONS
91	A simple genetic algorithm for the optimization of multidomain protein homology models driven by NMR residual dipolar coupling and small angle X-ray scattering data. European Biophysics Journal, 2007, 37, 95-104.	1.2	25
92	Unsupervised Learning of Echo State Networks: A Case Study in Artificial Embryogeny. , 2007, , 278-290.		4
93	Divide-and-Evolve: a Sequential Hybridization Strategy Using Evolutionary Algorithms. , 2007, , 179-198.		2
94	Parameter Setting for Evolutionary Latent Class Clustering. , 2007, , 472-484.		0
95	Towards a Science of Complex Systems. Complexus, 2006, 3, 7-7.	0.7	2
96	Editorial for the Special Issue on the Best of GECCO 2004. Evolutionary Computation, 2006, 14, v-v.	2.3	0
97	Blindbuilder: A New Encoding to Evolve Lego-Like Structures. Lecture Notes in Computer Science, 2006, , 61-72.	1.0	2
98	Universal Consistency and Bloat in GP Some theoretical considerations about Genetic Programming from a Statistical Learning Theory viewpoint. Revue D'Intelligence Artificielle, 2006, 20, 805-827.	0.5	13
99	Using coarse remote sensing radar observations to control the trajectory of a simple Sahelian land surface model. Remote Sensing of Environment, 2005, 94, 269-285.	4.6	13
100	Local and global order 3/2 convergence of a surrogate evolutionary algorithm. , 2005, , .		12
101	A statistical learning theory approach of bloat. , 2005, , .		6
102	Evolution of Voronoi based fuzzy recurrent controllers. , 2005, , .		3
103	ATNoSFERES revisited. , 2005, , .		7
104	Multi-disciplinary Analysis and Optimisation Approach for the Design of Expendable Launchers. , 2004, ,		18
105	GUIDE: Unifying Evolutionary Engines through a Graphical User Interface. Lecture Notes in Computer Science, 2004, , 203-215.	1.0	4
106	Dominance Based Crossover Operator for Evolutionary Multi-objective Algorithms. Lecture Notes in Computer Science, 2004, , 812-821.	1.0	5
107	Evolving Symbolic Controllers. Lecture Notes in Computer Science, 2003, , 638-650.	1.0	4
108	Surrogate Deterministic Mutation: Preliminary Results. Lecture Notes in Computer Science, 2002, , 104-116.	1.0	12

MARC SCHOENAUER

#	Article	IF	CITATIONS
109	Evolving Objects: A General Purpose Evolutionary Computation Library. Lecture Notes in Computer Science, 2002, , 231-242.	1.0	86
110	Evolutionary computing. Information Processing Letters, 2002, 82, 1-6.	0.4	148
111	Compact Unstructured Representations for Evolutionary Design. Applied Intelligence, 2002, 16, 139-155.	3.3	62
112	A Framework for Distributed Evolutionary Algorithms. Lecture Notes in Computer Science, 2002, , 665-675.	1.0	72
113	A Multiobjective Evolutionary Algorithm for Car Front End Design. Lecture Notes in Computer Science, 2002, , 205-216.	1.0	5
114	Multi-Objective Evolutionary Topological Optimum Design. , 2002, , 121-132.		11
115	Polar IFS+Parisian Genetic Programming=Efficient IFS Inverse Problem Solving. Genetic Programming and Evolvable Machines, 2000, 1, 339-361.	1.5	62
116	An Adaptive Algorithm for Constrained Optimization Problems. Lecture Notes in Computer Science, 2000, , 529-538.	1.0	41
117	Take It EASEA. Lecture Notes in Computer Science, 2000, , 891-901.	1.0	58
118	Rigorous Hitting Times for Binary Mutations. Evolutionary Computation, 1999, 7, 173-203.	2.3	137
119	Mimetic evolution. Lecture Notes in Computer Science, 1998, , 81-94.	1.0	2
120	Sphere operators and their applicability for constrained parameter optimization problems. Lecture Notes in Computer Science, 1998, , 239-250.	1.0	7
121	A dynamic lattice to envolve hierarchically shared subroutines. Lecture Notes in Computer Science, 1998, , 220-232.	1.0	2
122	Revisiting the Memory of Evolution. Fundamenta Informaticae, 1998, 35, 125-162.	0.3	1
123	Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996, 4, 1-32.	2.3	1,419
124	Mechanical inclusions identification by evolutionary computation. Revue Europeenne Des Elements, 1996, 5, 619-648.	0.1	18
125	Evolutionary algorithms for constrained engineering problems. Computers and Industrial Engineering, 1996, 30, 851-870.	3.4	242
126	Evolutionary computation at the edge of feasibility. Lecture Notes in Computer Science, 1996, , 245-254.	1.0	73

#	Article	IF	CITATIONS
127	Mutation by imitation in boolean evolution strategies. Lecture Notes in Computer Science, 1996, , 356-365.	1.0	8
128	A numerical strategy to defectuous knowledge using. Annals of Operations Research, 1995, 55, 379-401.	2.6	0
129	Simulated Darwinian evolution of homogenous multilayer systems: a new method for optical coatings design. Optics Communications, 1994, 110, 503-506.	1.0	18
130	Controlling crossover through inductive learning. Lecture Notes in Computer Science, 1994, , 209-218.	1.0	29