Jianshe Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874149/publications.pdf

Version: 2024-02-01

270 papers 14,100 citations

63 h-index 29081 104 g-index

272 all docs

 $\begin{array}{c} 272 \\ \text{docs citations} \end{array}$

times ranked

272

13347 citing authors

#	Article	IF	CITATIONS
1	Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 1989, 5, 51-66.	4.1	1,040
2	Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 2013, 571, 183-204.	2.8	700
3	Deformation behaviour of ultra-fine-grained copper. Acta Metallurgica Et Materialia, 1994, 42, 2467-2475.	1.9	547
4	Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates. Applied Surface Science, 2005, 239, 176-181.	3.1	259
5	Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 2844.	6.7	248
6	Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Applied Surface Science, 2011, 257, 5083-5087.	3.1	196
7	High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5413-5418.	2.2	187
8	IR and XPS investigation of visible-light photocatalysis—Nitrogen–carbon-doped TiO 2 film. Applied Surface Science, 2006, 253, 1988-1994.	3.1	170
9	Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. Journal of Power Sources, 2017, 343, 373-382.	4.0	162
10	Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2007, 253, 3727-3730.	3.1	156
11	A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 3021-3026.	2.2	152
12	Effects of microstructural variables on the deformation behaviour of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 190, 55-64.	2.6	150
13	Growth of vertically aligned Co ₃ S ₄ /CoMo ₂ S ₄ ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. Journal of Materials Chemistry A, 2016, 4, 18857-18867.	5.2	150
14	Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Materialia, 2014, 62, 69-80.	3.8	142
15	Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 201, 1814-1820.	2.2	139
16	Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials. Journal of Physical Chemistry C, 2009, 113, 16896-16900.	1.5	139
17	On the enhanced grain growth in ultrafine grained metals. Acta Metallurgica Et Materialia, 1995, 43, 4165-4170.	1.9	138
18	Enhancing photocatalytic activity of disorder-engineered C/TiO ₂ and TiO ₂ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 7439-7445.	5.2	130

#	Article	IF	Citations
19	One-pot hydrothermal synthesis of octahedral CoFe/CoFe ₂ O ₄ submicron composite as heterogeneous catalysts with enhanced peroxymonosulfate activity. Journal of Materials Chemistry A, 2016, 4, 9455-9465.	5.2	128
20	Electroless Ni–P plating on AZ91D magnesium alloy from a sulfate solution. Journal of Alloys and Compounds, 2005, 391, 104-109.	2.8	127
21	Synthesis of a Thin-Layer MnO ₂ Nanosheet-Coated Fe ₃ O ₄ Nanocomposite as a Magnetically Separable Photocatalyst. Langmuir, 2014, 30, 7006-7013.	1.6	126
22	Plastic behaviour and stretchability of sheet metals. Part II: Effect of yield surface shape on sheet forming limit. International Journal of Plasticity, 1989, 5, 131-147.	4.1	119
23	Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Applied Surface Science, 2005, 252, 420-424.	3.1	119
24	Structure and photocatalytic property of Mo-doped TiO2 nanoparticles. Powder Technology, 2013, 244, 9-15.	2.1	118
25	Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Transactions of Nonferrous Metals Society of China, 2015, 25, 504-509.	1.7	115
26	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Materialia, 2006, 54, 579-584.	2.6	113
27	Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni. Transactions of Nonferrous Metals Society of China, 2010, 20, 82-89.	1.7	112
28	Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. Journal Physics D: Applied Physics, 2007, 40, 7440-7446.	1.3	110
29	Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5956-5962.	2.2	109
30	Visible-light photocatalysis in nitrogen–carbon-doped TiO2 films obtained by heating TiO2 gel–film in an ionized N2 gas. Thin Solid Films, 2008, 516, 1736-1742.	0.8	108
31	CaGdAlO ₄ :Tb ³⁺ /Eu ³⁺ as promising phosphors for full-color field emission displays. Journal of Materials Chemistry C, 2014, 2, 9924-9933.	2.7	107
32	Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 23333-23344.	5.2	107
33	A black phosphate coating for C1008 steel. Surface and Coatings Technology, 2004, 176, 215-221.	2.2	102
34	Model for the prediction of the mechanical behaviour of nanocrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 172, 23-29.	2.6	101
35	Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum, 2011, 85, 861-865.	1.6	100
36	High corrosion-resistant Ni–P/Ni/Ni–P multilayer coatings on steel. Surface and Coatings Technology, 2005, 197, 61-67.	2.2	97

#	Article	IF	Citations
37	Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Applied Surface Science, 2012, 263, 260-265.	3.1	95
38	Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy. Applied Surface Science, 2008, 254, 4949-4955.	3.1	94
39	Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 9841-9848.	4.0	92
40	Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition. Applied Surface Science, 2006, 252, 8451-8455.	3.1	91
41	Electroless Ni–P layer with a chromium-free pretreatment on AZ91D magnesium alloy. Surface and Coatings Technology, 2007, 201, 4594-4600.	2.2	90
42	Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance. Surface and Coatings Technology, 2008, 202, 2570-2576.	2.2	87
43	Study of the formation and growth of tannic acid based conversion coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2009, 204, 736-747.	2.2	87
44	Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surface and Coatings Technology, 2016, 307, 99-108.	2.2	85
45	Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Applied Surface Science, 2008, 254, 4620-4625.	3.1	84
46	Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Applied Physics Letters, 2006, 88, 143115.	1.5	83
47	Electroless deposition of Ni–W–P coating on AZ91D magnesium alloy. Applied Surface Science, 2007, 253, 5116-5121.	3.1	80
48	Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition. Applied Surface Science, 2010, 256, 2910-2914.	3.1	80
49	Uniting tensile ductility with ultrahigh strength via composition undulation. Nature, 2022, 604, 273-279.	13.7	80
50	Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity. Scientific Reports, 2016, 6, 20933.	1.6	79
51	Enhanced UV emission of Y-doped ZnO nanoparticles. Applied Surface Science, 2012, 258, 6735-6738.	3.1	76
52	Theoretical model for the tensile work hardening behaviour of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 147, 55-65.	2.6	75
53	Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition. Thin Solid Films, 2008, 516, 3394-3398.	0.8	7 5
54	A novel open architecture built by ultra-fine single-crystal Co ₂ (CO ₃)(OH) ₂ nanowires and reduced graphene oxide for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17171-17179.	5.2	74

#	Article	IF	CITATIONS
55	Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy. Applied Surface Science, 2019, 492, 314-327.	3.1	74
56	Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Scientific Reports, 2015, 5, 16629.	1.6	73
57	A unique porous architecture built by ultrathin wrinkled NiCoO ₂ /rGO/NiCoO ₂ sandwich nanosheets for pseudocapacitance and Li ion storage. Journal of Materials Chemistry A, 2016, 4, 10304-10313.	5.2	72
58	Microstructure and wear property of laser cladding Al+SiC powders on AZ91D magnesium alloy. Optics and Lasers in Engineering, 2010, 48, 526-532.	2.0	71
59	High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 410-416.	2.6	69
60	An organic chromium-free conversion coating on AZ91D magnesium alloy. Applied Surface Science, 2008, 255, 2322-2328.	3.1	68
61	High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors. Scientific Reports, 2016, 6, 31591.	1.6	68
62	Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 2009, 255, 6978-6984.	3.1	66
63	Improvement of the Biodegradation Property and Biomineralization Ability of Magnesium–Hydroxyapatite Composites with Dicalcium Phosphate Dihydrate and Hydroxyapatite Coatings. ACS Biomaterials Science and Engineering, 2016, 2, 818-828.	2.6	66
64	High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor. Scientific Reports, 2017, 7, 17709.	1.6	64
65	The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy. Progress in Organic Coatings, 2012, 74, 788-793.	1.9	63
66	Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Materials Characterization, 2010, 61, 1239-1244.	1.9	62
67	Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. Journal of Applied Physics, 2006, 99, 076103.	1.1	61
68	Optical and magnetic properties of Ndâ€doped ZnO nanoparticles. Crystal Research and Technology, 2012, 47, 713-718.	0.6	61
69	Structural, optical and electrical properties of cerium and gadolinium doped CdO thin films. Applied Surface Science, 2013, 274, 365-370.	3.1	60
70	Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating. Surface and Coatings Technology, 2020, 401, 126318.	2.2	59
71	Investigation of nanocrystalline zinc–nickel alloy coatings in an alkaline zincate bath. Surface and Coatings Technology, 2005, 191, 59-67.	2.2	58
72	In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance. Electrochimica Acta, 2016, 190, 276-284.	2.6	58

#	Article	IF	Citations
73	Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface and Coatings Technology, 2020, 397, 125919.	2.2	57
74	An analytical study of the influence of thermal residual stresses on the elastic and yield behaviors of short fiber-reinforced metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 248, 256-275.	2.6	56
75	Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII. Journal of Physical Chemistry C, 2007, 111, 1005-1009.	1.5	55
76	Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceramics International, 2014, 40, 5107-5110.	2.3	55
77	Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni. Journal of Alloys and Compounds, 2015, 647, 670-680.	2.8	55
78	An elevated temperature Mg–Dy–Zn alloy with long period stacking ordered phase by extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3609-3614.	2.6	54
79	Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. Journal of Physical Chemistry C, 2012, 116, 17572-17579.	1.5	54
80	Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corrosion Science, 2021, 180, 109186.	3.0	54
81	Deformation-induced localized solid-state amorphization in nanocrystalline nickel. Scientific Reports, 2012, 2, 493.	1.6	53
82	Synthesis of amorphous TiO2 modified ZnO nanorod film with enhanced photocatalytic properties. Applied Surface Science, 2014, 299, 97-104.	3.1	53
83	Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Physical Chemistry Chemical Physics, 2012, 14, 11715.	1.3	52
84	A Ni $<$ sub $>$ 1 \hat{a}^* x $<$ /sub $>$ Zn $<$ sub $>$ x $<$ /sub $>$ S/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 12929-12939.	5.2	52
85	Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Applied Surface Science, 2019, 492, 349-361.	3.1	52
86	Al-doped ZnO films by pulsed laser deposition at room temperature. Vacuum, 2006, 81, 18-21.	1.6	51
87	High Strength Nanocrystalline Ni-Co Alloy with Enhanced Tensile Ductility. Advanced Engineering Materials, 2006, 8, 252-256.	1.6	51
88	Optical properties and photocatalytic activity of Nd-doped ZnO powders. Transactions of Nonferrous Metals Society of China, 2014, 24, 1434-1439.	1.7	51
89	<i>In situ</i> phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting. Energy and Environmental Science, 2022, 15, 2425-2434.	15.6	50
90	Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass. Transactions of Nonferrous Metals Society of China, 2008, 18, 145-149.	1.7	49

#	Article	IF	Citations
91	CuS/MnS composite hexagonal nanosheet clusters: Synthesis and enhanced pseudocapacitive properties. Electrochimica Acta, 2018, 271, 425-432.	2.6	49
92	Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chemical Engineering Journal, 2022, 439, 135634.	6.6	49
93	Reduced core-shell structured MnCo2O4@MnO2 nanosheet arrays with oxygen vacancies grown on Ni foam for enhanced-performance supercapacitors. Journal of Alloys and Compounds, 2020, 846, 156504.	2.8	48
94	Reduced graphene oxide wrapped Fe3O4–Co3O4 yolk–shell nanostructures for advanced catalytic oxidation based on sulfate radicals. Applied Surface Science, 2017, 396, 945-954.	3.1	47
95	MoS ₂ Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications. ACS Applied Nano Materials, 2021, 4, 1330-1339.	2.4	47
96	Preparation and Corrosion Behavior of Calcium Phosphate and Hydroxyapatite Conversion Coatings on AM60 Magnesium Alloy. Journal of the Electrochemical Society, 2013, 160, C536-C541.	1.3	46
97	Structural, optical and electrical properties of Zn1â^xCdxO thin films prepared by PLD. Applied Surface Science, 2011, 257, 5657-5662.	3.1	45
98	Single-crystalline Ni(OH)2nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23412-23419.	5.2	45
99	External Electric Field Catalyzed N ₂ O Decomposition on Mn-Embedded Graphene. Journal of Physical Chemistry C, 2012, 116, 20342-20348.	1.5	44
100	Ni Foamâ€Ni ₃ S ₂ @Ni(OH) ₂ â€Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance. Chemistry - A European Journal, 2017, 23, 4128-4136.	1.7	43
101	A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel Li ₄ Ti ₅ O ₁₂ and Rutile TiO ₂ Lamellas for High-Rate Anodes of Lithium-Ion Batteries. ACS Applied Materials & Spinel Pitting Spinel Pi	4.0	42
102	A dislocation density approximation for the flow stressâ€"grain size relation of polycrystals. Acta Metallurgica Et Materialia, 1995, 43, 3349-3360.	1.9	41
103	Enhancing the corrosion resistance and surface bioactivity of a calcium-phosphate coating on a biodegradable AZ60 magnesium alloy via a simple fluorine post-treatment method. RSC Advances, 2015, 5, 56001-56010.	1.7	41
104	Forming limit diagram of sheet metal in the negative minor strain region. Materials Science and Engineering, 1987, 86, 137-144.	0.1	40
105	Application of Hill's new yield theory to sheet metal formingâ€"Part I. Hill's 1979 criterion and its application to predicting sheet forming limit. International Journal of Mechanical Sciences, 1989, 31, 237-247.	3.6	40
106	A modified Hall-Petch relationship for nanocrystalline materials. Scripta Materialia, 1993, 2, 415-419.	0.5	40
107	Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition. Scripta Materialia, 2007, 57, 233-236.	2.6	40
108	Nanostructured Mn ₃ O ₄ â€"reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of Orange II and high lithium storage capacity. RSC Advances, 2014, 4, 41838-41847.	1.7	40

#	Article	IF	CITATIONS
109	Facile Synthesis ZnS/ZnO/Ni(OH)2 Composites Grown on Ni Foam: A Bifunctional Materials for Photocatalysts and Supercapacitors. Scientific Reports, 2017, 7, 3021.	1.6	40
110	Theoretical Study of C ₂ H ₂ Adsorbed on Low-Index Cu Surfaces. Journal of Physical Chemistry C, 2007, 111, 18189-18194.	1.5	39
111	One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties. Electrochimica Acta, 2016, 192, 188-195.	2.6	39
112	The relationship between ductility and material parameters for dual-phase steel. Journal of Materials Science, 1993, 28, 1814-1818.	1.7	38
113	Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties. Journal of the Electrochemical Society, 2018, 165, C962-C972.	1.3	38
114	A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111186.	2.5	38
115	Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s323-s328.	1.7	37
116	Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications. Journal of Alloys and Compounds, 2020, 817, 152782.	2.8	37
117	Multilayer Ni-P Coating for Improving the Corrosion Resistance of AZ91D Magnesium Alloy. Advanced Engineering Materials, 2005, 7, 1032-1036.	1.6	36
118	Electrochemical synthesis and optical properties of ZnO thin film on In2O3:Sn (ITO)-coated glass. Applied Surface Science, 2007, 253, 7011-7015.	3.1	36
119	Ductile–brittle–ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6wt.% Co alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 75-81.	2.6	36
120	Surface Energy and Electronic Structures of Ag Quasicrystal Clusters. Journal of Physical Chemistry C, 2009, 113, 1168-1170.	1.5	36
121	How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. Journal of Materials Research, 2017, 32, 16-36.	1.2	36
122	ZnO thin film formation on Si(111) by laser ablation of Zn target in oxygen atmosphere. Journal of Crystal Growth, 2005, 279, 447-453.	0.7	35
123	Microstructure and properties of thin wall by laser cladding forming. Journal of Materials Processing Technology, 2009, 209, 4970-4976.	3.1	35
124	Markedly enhanced coercive field and Congo red adsorption capability of cobalt ferrite induced by the doping of non-magnetic metal ions. Chemical Engineering Journal, 2014, 241, 384-392.	6.6	35
125	Synthesis of YSZ nanocrystalline particles via the nitrate–citrate combustion route using diester phosphate (PE) as dispersant. Materials Letters, 2003, 57, 2792-2797.	1.3	34
126	Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability. Applied Surface Science, 2022, 575, 151596.	3.1	34

#	Article	IF	Citations
127	Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu. Journal of Applied Physics, 2008, 104, .	1.1	33
128	Structural, optical and electrical characterization of gadolinium and indium doped cadmium oxide/p-silicon heterojunctions for solar cell applications. RSC Advances, 2014, 4, 52451-52460.	1.7	33
129	Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass. Applied Surface Science, 2008, 254, 6605-6610.	3.1	32
130	High corrosion resistance of electroless Ni-P with chromium-free conversion pre-treatments on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 921-928.	1.7	32
131	Electromagnetic shielding and corrosion resistance of electroless Ni-P and Ni-P-Cu coatings on polymer/carbon fiber composites. Polymer Composites, 2015, 36, 923-930.	2.3	32
132	A new relationship between the flow stress and the microstructural parameters for dual phase steel. Acta Metallurgica Et Materialia, 1992, 40, 1587-1597.	1.9	31
133	A new analytical model for three-dimensional elastic stress field distribution in short fibre composite. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2004, 366, 381-396.	2.6	31
134	The Optimal Grain Sized Nanocrystalline Ni with High Strength and Good Ductility Fabricated by a Direct Current Electrodeposition. Advanced Engineering Materials, 2008, 10, 539-546.	1.6	31
135	Double-peak ageing behavior of Mg–2Dy–0.5Zn alloy. Journal of Alloys and Compounds, 2011, 509, 8268-8275.	2.8	31
136	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheet Networks as Highâ€Performance Anodes for Lithium Storage. ChemPlusChem, 2015, 80, 1725-1731.	1.3	31
137	Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 2020, 278, 102136.	7.0	31
138	Necking development and strain to fracture under uniaxial tension. Materials Science and Engineering, 1986, 84, 157-162.	0.1	30
139	Composite Microstructure and Formation Mechanism of Calcium Phosphate Conversion Coating on Magnesium Alloy. Journal of the Electrochemical Society, 2016, 163, G138-G143.	1.3	30
140	Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 35-41.	2.6	30
141	Modeling size and surface effects on ZnS phase selection. Chemical Physics Letters, 2008, 455, 202-206.	1.2	29
142	Influence of sodium metanitrobenzene sulphonate on structures and surface morphologies of phosphate coating on AZ91D. Transactions of Nonferrous Metals Society of China, 2006, 16, 567-571.	1.7	28
143	Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 136-141.	2.6	28
144	Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic. Applied Surface Science, 2014, 290, 320-326.	3.1	28

#	Article	IF	Citations
145	Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals. Materials Science in Semiconductor Processing, 2014, 24, 247-253.	1.9	28
146	Biocompatible DCPD Coating Formed on AZ91D Magnesium Alloy by Chemical Deposition and Its Corrosion Behaviors in SBF. Journal of Bionic Engineering, 2014, 11, 610-619.	2.7	27
147	Enhanced Photocatalytic Performance of Supported Fe Doped ZnO Nanorod Arrays Prepared by Wet Chemical Method. Catalysis Letters, 2014, 144, 347-354.	1.4	26
148	Plastic deformation behavior during unloading in compressive cyclic test of nanocrystalline copper. Materials Science & Department of the Compressive Cyclic test of nanocrystalline copper. Materials Science & Department of the Cyclic Test of National Processing, 2016, 651, 999-1009.	2.6	26
149	Improving the Degradation Resistance and Surface Biomineralization Ability of Calcium Phosphate Coatings on a Biodegradable Magnesium Alloy via a Sol-Gel Spin Coating Method. Journal of the Electrochemical Society, 2018, 165, C155-C161.	1.3	26
150	Enhanced ductility of high-strength electrodeposited nanocrystalline Ni–Co alloy with fine grain size. Journal of Alloys and Compounds, 2010, 504, S439-S442.	2.8	25
151	Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel. Materials Science & Droperties, Microstructure and Processing, 2016, 662, 432-442.	2.6	25
152	Mapping the strain-rate and grain-size dependence of deformation behaviors in nanocrystalline face-centered-cubic Ni and Ni-based alloys. Journal of Alloys and Compounds, 2017, 709, 566-574.	2.8	25
153	Nano-structured films formed on the AISI 329 stainless steel by Nd-YAG pulsed laser irradiation. Applied Surface Science, 2004, 229, 2-8.	3.1	24
154	Re-examination of Casimir limit for phonon traveling in semiconductor nanostructures. Applied Physics Letters, 2008, 92, 113101.	1.5	24
155	Nanocrystalline ZnO films prepared by pulsed laser deposition and their abnormal optical properties. Applied Surface Science, 2013, 283, 781-787.	3.1	24
156	Selected crystallization of water as a function of size. Chemical Physics Letters, 2006, 421, 251-255.	1.2	23
157	The origin of the ultrahigh strength and good ductility in nanotwinned copper. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4270-4274.	2.6	23
158	Microstructure and Mechanical Properties of an Extruded Mg-2Dy-0.5Zn Alloy. Journal of Materials Science and Technology, 2012, 28, 543-551.	5.6	23
159	Bandgap variation in grain size controlled nanostructured CdO thin films deposited by pulsed-laser method. Journal of Materials Science: Materials in Electronics, 2014, 25, 1003-1012.	1.1	23
160	P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications. Electrochimica Acta, 2021, 392, 138976.	2.6	23
161	Effect of substrate temperature on structural properties and photocatalytic activity of TiO2 thin films. Transactions of Nonferrous Metals Society of China, 2007, 17, 772-776.	1.7	22
162	A novel electrodeposited nanostructured Ni coating with grain size gradient distribution. Surface and Coatings Technology, 2008, 203, 142-147.	2.2	22

#	Article	IF	Citations
163	Experimental and firstâ€principle investigation of Cuâ€doped ZnO ferromagnetic powders. Crystal Research and Technology, 2011, 46, 1143-1148.	0.6	22
164	Optical properties of Cu-doped ZnO nanoparticles experimental and first-principles theory research. Journal of Materials Science: Materials in Electronics, 2012, 23, 1521-1526.	1.1	22
165	Effect of strain rate on tensile properties of electric brush-plated nanocrystalline copper. Materials Science & Science & Properties, Microstructure and Processing, 2014, 618, 621-628.	2.6	22
166	Structure and Photocatalysis of TiO ₂ /ZnO Double-Layer Film Prepared by Pulsed Laser Deposition. Materials Transactions, 2012, 53, 463-468.	0.4	21
167	Facile synthesis of copper selenide with fluffy intersected-nanosheets decorating nanotubes structure for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 22983-22990.	3.8	21
168	Rational fabrication of nanosheet-dewy NiMoO4/Ni3S2 nanohybrid for efficient hybrid supercapacitor. Journal of Alloys and Compounds, 2019, 783, 399-408.	2.8	21
169	Facile synthesis clusters of sheet-like Ni3S4/CuS nanohybrids with ultrahigh supercapacitor performance. Journal of Solid State Chemistry, 2020, 282, 121088.	1.4	21
170	Nanostructuring as a route to achieve ultra-strong high- and medium-entropy alloys with high creep resistance. Journal of Alloys and Compounds, 2020, 830, 154656.	2.8	21
171	Ultra-strong and thermally stable nanocrystalline CrCoNi alloy. Journal of Materials Science and Technology, 2022, 106, 1-9.	5.6	21
172	Enhanced tensile ductility in an electrodeposited nanocrystalline copper. Journal of Materials Research, 2008, 23, 2238-2244.	1.2	20
173	Effect of cold rolling on tensile properties and microstructure of high nitrogen alloyed austenitic steel. Materials Science and Technology, 2014, 30, 146-151.	0.8	20
174	Dry sliding wear behavior of extruded Mg-Sn-Yb alloy. Journal of Rare Earths, 2015, 33, 77-85.	2.5	20
175	One-step synthesis of nanostructured Bi–Bi ₂ O ₂ CO ₃ –ZnO composites with enhanced photocatalytic performance. CrystEngComm, 2015, 17, 3809-3819.	1.3	20
176	Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52598-52609.	4.0	20
177	Numerical analysis of superplastic bulging for cavity-sensitive materials. International Journal of Mechanical Sciences, 1987, 29, 565-576.	3.6	19
178	Effects of passivation on the properties of Ni-P alloy coating deposited on CFs reinforced PEEK. Surface and Coatings Technology, 2013, 232, 269-274.	2.2	19
179	Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance. Journal of Materials Engineering and Performance, 2017, 26, 6117-6129.	1.2	19
180	Improvements of Corrosion Resistance and Antibacterial Properties of Hydroxyapatite/Cupric Oxide Doped Titania Composite Coatings on Degradable Magnesium Alloys. Langmuir, 2020, 36, 13937-13948.	1.6	19

#	Article	IF	Citations
181	A polydopamine-based calcium phosphate/graphene oxide composite coating on magnesium alloy to improve corrosion resistance and biocompatibility for biomedical applications. Materialia, 2022, 21, 101315.	1.3	19
182	Stress–strain behavior in initial yield stage of short fiber reinforced metal matrix composite. Composites Science and Technology, 2002, 62, 841-850.	3.8	18
183	Mechanical behavior of an electrodeposited nanostructured Cu with a mixture of nanocrystalline grains and nanoscale growth twins in submicrometer grains. Journal of Applied Physics, 2008, 104, 084305.	1.1	18
184	Multifunctional NaYF4:Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging. RSC Advances, 2013, 3, 8517.	1.7	18
185	Elastic–plastic stress transfer in short fibre-reinforced metal–matrix composites. Composites Science and Technology, 2004, 64, 1661-1670.	3.8	17
186	An analytical model for elastic stress field distribution in fibre composite with partially debonded interface. Composites Science and Technology, 2005, 65, 1176-1194.	3.8	17
187	Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate. Applied Surface Science, 2011, 258, 93-97.	3.1	17
188	Effects of Process Parameters on Microstructure and Hardness of Layers by Laser Cladding. ISIJ International, 2011, 51, 441-447.	0.6	17
189	Electronic Structures and Hydrogen Bond Network of High-Density and Very High-Density Amorphous Ices. Journal of Physical Chemistry B, 2005, 109, 19893-19896.	1.2	16
190	Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature. Journal of Applied Physics, 2009, 106, .	1.1	16
191	High-speed creep process mediated by rapid dislocation absorption in nanocrystalline Cu. Journal of Applied Physics, 2012, 111, 063506.	1.1	16
192	The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 2014, 23, 3957-3962.	1.2	16
193	Deformation behavior of an extruded Mg–Dy–Zn alloy with long period stacking ordered phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 52-60.	2.6	16
194	Strain rate dependence of tensile strength and ductility of nano and ultrafine grained coppers. Materials Science & Dependence of tensile structural Materials: Properties, Microstructure and Processing, 2018, 712, 341-349.	2.6	16
195	Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 11952-11963.	1.1	16
196	Charge Storage by Electrochemical Reaction of Water Bilayers Absorbed on MoS2 Monolayers. Scientific Reports, 2019, 9, 3980.	1.6	16
197	The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104759.	1.5	15
198	Isotropic polycrystal yield surfaces of b.c.c. and f.c.c. metals: crystallographic and continuum mechanics approaches. Acta Metallurgica Et Materialia, 1991, 39, 2285-2294.	1.9	14

#	Article	IF	CITATIONS
199	Synthesis of nanocrystalline NiO/doped CeO2 compound powders through combustion of citrate/nitrate gel. Materials Letters, 2004, 58, 1183-1188.	1.3	14
200	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
201	Cu-doped Ni3S2 nanosheet arrays on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. Journal of Solid State Chemistry, 2021, 293, 121776.	1.4	14
202	Diffuse necking and localized necking under plane stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 111, 1-7.	2.6	13
203	Influence of predeformation on microstructure and mechanical properties of 1020 dual phase steel. Materials Science and Technology, 1991, 7, 527-532.	0.8	13
204	A Zinc and Manganese Phosphate Coating on Automobile Iron Castings. ISIJ International, 2005, 45, 1326-1330.	0.6	13
205	Synthesis and photoluminescence of Y and Cd co-doped ZnO nanopowder. Transactions of Nonferrous Metals Society of China, 2013, 23, 2336-2340.	1.7	13
206	Synthesis of polygonal Co ₃ Sn ₂ nanostructure with enhanced magnetic properties. RSC Advances, 2016, 6, 39818-39822.	1.7	13
207	Reusable Co $<$ sub $>$ x $<$ /sub $>$ Ni $<$ sub $>$ 1 \hat{a} ° x $<$ /sub $>$ dye adsorbents as supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 8095-8107.	5. 2	13
208	Invigorating the catalytic performance of CoP through interfacial engineering by Ni ₂ P precipitation. Journal of Materials Chemistry A, 2019, 7, 26177-26186.	5.2	13
209	Corrosion Resistance and Biocompatibility of Calcium Phosphate Coatings with a Micro–Nanofibrous Porous Structure on Biodegradable Magnesium Alloys. ACS Applied Bio Materials, 2022, 5, 1528-1537.	2.3	13
210	Preparation of nano-silver iodide powders and their efficiency as ice-nucleating agent in weather modification. Advanced Powder Technology, 2011, 22, 613-616.	2.0	12
211	Superhydrophobic Behavior and Optical Properties of ZnO Film Fabricated by Hydrothermal Method. Journal of Materials Science and Technology, 2012, 28, 103-108.	5.6	12
212	Disordered ZnO nanoparticles with extremely intense deep-level emission and enhanced photocatalytic activity. Applied Surface Science, 2014, 313, 888-895.	3.1	12
213	Nanostructured Co _x Ni _{1â^'x} bimetallic alloys for high efficient and ultrafast adsorption: experiments and first-principles calculations. RSC Advances, 2016, 6, 9209-9220.	1.7	12
214	Improving the corrosion resistance and biocompatibility of magnesium alloy via composite coatings of calcium phosphate/carbonate induced by silane. Progress in Organic Coatings, 2022, 163, 106653.	1.9	12
215	The irradiation effect of a Nd–YAG pulsed laser on the CeO2 target in the liquid. Materials Letters, 2004, 58, 337-341.	1.3	11
216	Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films. Thin Solid Films, 2006, 497, 333-337.	0.8	11

#	Article	IF	CITATIONS
217	Tensile-relaxation behavior of electrodeposited nanocrystalline Ni. Journal of Applied Physics, 2010, 108, 054319.	1.1	11
218	Surface oxidation kinetics of Cr film by Nd-YAG laser. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 391, 210-220.	2.6	10
219	Effect of zinc–phosphate–molybdate conversion precoating on performance of cathode epoxy electrocoat on AZ91D alloy. Surface Engineering, 2007, 23, 56-61.	1.1	10
220	Synthesis and characteristics of large-scale ZnO rods by wet chemical method. Transactions of Nonferrous Metals Society of China, 2008, 18, 1089-1093.	1.7	10
221	Microstructures and mechanical properties of extruded Mg–2Sn–xYb (x=0, 0.1, 0.5Âat.%) sheets. Journal of Magnesium and Alloys, 2014, 2, 257-264.	5.5	10
222	Grain size dependent microstructure and texture evolution during dynamic deformation of nanocrystalline face-centered cubic materials. Acta Materialia, 2021, 216, 117088.	3.8	10
223	Effects of cold-rolling and subsequent annealing on the nano-mechanical and creep behaviors of CrCoNi medium-entropy alloy. Materials Science & CrCoNi medium-entropy alloy. Materials Science & CrCoNi medium-entropy alloy. Materials Science & CrCoNi medium-entropy alloy. Microstructure and Processing, 2022, 839, 142802.	2.6	10
224	Application of Hill's new yield theory to sheet metal formingâ€"Part II. A numerical study of hydrostatic bulging using Hill's 1979 yield criterion. International Journal of Mechanical Sciences, 1989, 31, 249-263.	3.6	9
225	Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process. Applied Surface Science, 2002, 202, 114-119.	3.1	9
226	Cr2O3 Film Formed by Surface Oxidation of Stainless Steel Irradiated by a Nd-YAG Pulsed Laser. ISIJ International, 2005, 45, 730-735.	0.6	9
227	Electronic structures and hydrogen bond network of ambient water and amorphous ices. Chemical Physics Letters, 2007, 437, 45-49.	1.2	9
228	Stable ductility of an electrodeposited nanocrystalline Ni–20wt.%Fe alloy in tensile plastic deformation. Journal of Alloys and Compounds, 2013, 553, 99-105.	2.8	9
229	New insight into modulated up-conversion luminescent silica nanotubes as efficient adsorbents for colored effluents. Dalton Transactions, 2014, 43, 15457-15464.	1.6	9
230	Plastic deformation and fracture behaviour of high-nitrogen nickel-free austenitic stainless steel. Materials Science and Technology, 2017, 33, 1635-1644.	0.8	9
231	Threeâ€Dimensional ZnMn ₂ O ₄ Nanoparticles/Carbon Cloth Anodes for Highâ€Performance Flexible Lithiumâ€lon Batteries. ChemistrySelect, 2020, 5, 2372-2378.	0.7	9
232	Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy. Journal of Materials Science and Technology, 2022, 127, 98-107.	5.6	9
233	Plastic instability and strain to fracture for damaged materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 131, 9-15.	2.6	8
234	The deformation and fracture behavior of an electrodeposited nanocrystalline Ni under compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7878-7886.	2.6	8

#	Article	IF	Citations
235	Stability of indium–tin-oxide and its optical properties: A first-principles study. Journal of Physics and Chemistry of Solids, 2013, 74, 446-451.	1.9	8
236	Solvothermal synthesis of nanocrystalline ZnO with excellent photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2014, 25, 5518-5523.	1.1	8
237	A composite model for superplasticity. Journal of Materials Science, 1995, 30, 1977-1981.	1.7	6
238	Micro processing on Cr films by Nd:YAG pulsed laser oxidation method. Journal of Materials Processing Technology, 2007, 184, 173-176.	3.1	6
239	The grain refinement mechanism of electrodeposited copper. Journal of Materials Research, 2009, 24, 3226-3236.	1.2	6
240	Toward Tandem Photovoltaic Devices Employing Nanoarray Graphene-Based Sheets. Journal of Physical Chemistry C, 2014, 118, 2385-2390.	1.5	6
241	Role of Edge Geometry and Magnetic Interaction in Opening Bandgap of Lowâ€Dimensional Graphene. ChemPhysChem, 2014, 15, 958-965.	1.0	6
242	Glucose-assisted generation of assembled mesoporous ZnO sheets with highly efficient photocatalytic performance. Materials Science in Semiconductor Processing, 2015, 39, 680-685.	1.9	6
243	Nanoindentation creep deformation behaviour of high nitrogen nickel-free austenitic stainless steel. Materials Science and Technology, 2019, 35, 1592-1599.	0.8	6
244	Influence of variation of strain rate sensitivity on limit strain of superplasticity. Scripta Metallurgica, 1987, 21, 331-334.	1.2	5
245	Dual-phase nanocrystalline Ni–Co alloy with high strength and enhanced ductility. Journal of Materials Research, 2010, 25, 401-405.	1.2	5
246	High resolution transmission electron microscopy in situ investigation into the spontaneous coalescence of gold nanoparticles at room temperature. RSC Advances, 2013, 3, 24017.	1.7	5
247	Understanding the microscopic deformation mechanism and macroscopic mechanical behavior of nanocrystalline Ni by the long-term stress relaxation test. International Journal of Modern Physics B, 2014, 28, 1450124.	1.0	5
248	Enhancing the brightness and saturation of noniridescent structural colors by optimizing the grain size. Nanoscale Advances, 2020, 2, 4581-4590.	2.2	5
249	Finite-element numerical analysis of sheet metal under uniaxial tension with a new yield criterion. Journal of Materials Processing Technology, 1992, 31, 245-253.	3.1	4
250	Numerical analysis of the influence of various factors on forming the limit of hydrostatic bulging for ductile materials. Computers and Structures, 1994, 50, 677-684.	2.4	4
251	AN INVESTIGATION OF SMOOTH NANOSIZED COPPER FILMS ON GLASS SUBSTRATE BY IMPROVED ELECTROLESS PLATING. Surface Review and Letters, 2006, 13, 471-478.	0.5	4
252	Glass Transition of Low-Density Amorphous Water and Related Structures. Journal of Physical Chemistry B, 2007, 111, 11177-11180.	1.2	4

#	Article	IF	Citations
253	Electroless Ni-P deposition on magnesium alloy from a sulfate bath. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 60-64.	0.4	4
254	Organic-magnesium complex conversion coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s643-s647.	1.7	4
255	Micro-twins TiO2 nanorods grown on seeded ZnO film. Journal of Crystal Growth, 2012, 344, 1-5.	0.7	4
256	Ca-P conversion coating on AZ60 magnesium alloy for biomedical application. Chemical Research in Chinese Universities, 2014, 30, 543-548.	1.3	4
257	Effect of Al Addition on the Microstructure and Mechanical Properties of Al _x CrCoNi Medium Entropy Alloys Prepared via the Magnetron Coâ€5puttering. Advanced Engineering Materials, 2022, 24, .	1.6	4
258	ENHANCED TENSILE DUCTILITY IN AN ELECTRODEPOSITED CU WITH NANO-SIZED GROWTH TWINS. International Journal of Modern Physics B, 2010, 24, 2537-2542.	1.0	3
259	INFLUENCE OF SURFACTANTS ON THE CORROSION PROPERTIES OF CHROMIUM-FREE ELECTROLESS NICKEL DEPOSIT ON MAGNESIUM ALLOY. Surface Review and Letters, 2012, 19, 1250025.	0.5	3
260	A new method to prepare MgO and base for further electroless nickel deposition on magnesium substrate. International Journal of Surface Science and Engineering, 2013, 7, 97.	0.4	3
261	High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold. Journal of Applied Physics, 2014, 116, 103518.	1.1	3
262	A novel interfacial synthesis of MnO–NiO–reduced graphene oxide hybrid with enhanced pseudocapacitance performance. RSC Advances, 2015, 5, 54138-54147.	1.7	3
263	Dependence of initial stress–strain behavior on matrix plastic inhomogeneity in short fiber-reinforced metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 369, 93-100.	2.6	2
264	Preparation of Nanocrystalline Cu Films by Brush-Plating. Integrated Ferroelectrics, 2012, 137, 52-60.	0.3	2
265	Revealing the intrinsic dislocation storage capability in nanocrystalline nickel. Materials Letters, 2014, 127, 20-23.	1.3	2
266	Structural and optical properties of nanostructured ZnO thin films deposited on quartz glass. , 2006, , .		1
267	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni., 0,,.		1
268	IMPROVED MECHANICAL PROPERTY OF ELECTRODEPOSITED NANOCRYSTALLINE NICKEL-COBALT ALLOY. International Journal of Modern Physics B, 2010, 24, 2285-2290.	1.0	1
269	Dislocation Evolution in Nanograins during Successive Stress Relaxation. Advanced Engineering Materials, 2014, 16, 413-420.	1.6	1
270	Numerical Analysis of the Influence of Various Defects on Superplastic Fracture Under Uniaxial Tension. Studies in Applied Mechanics, 1987, 15, 213-220.	0.4	1