Hu Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874046/publications.pdf

Version: 2024-02-01

346980 536525 1,891 29 30 22 citations h-index g-index papers 30 30 30 2944 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Preparation of the Garlic Oil Microcapsule/CS/PVA Nanofiber Membrane and the Antibacterial Properties. Fibers and Polymers, 2022, 23, 343-351.	1.1	2
2	A new strategy to construct cellulose-chitosan films supporting Ag/Ag2O/ZnO heterostructures for high photocatalytic and antibacterial performance. Journal of Colloid and Interface Science, 2022, 609, 188-199.	5.0	35
3	Recent Progress in Highâ€6trength and Robust Regenerated Cellulose Materials. Advanced Materials, 2021, 33, e2000682.	11.1	244
4	The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. Polymer, 2021, 215, 123379.	1.8	22
5	Incorporation of Layered Rectorite into Biocompatible Core–Sheath Nanofibrous Mats for Sustained Drug Delivery. ACS Biomaterials Science and Engineering, 2021, 7, 4509-4520.	2.6	5
6	Superior strength and highly thermoconductive cellulose/ boron nitride film by stretch-induced alignment. Journal of Materials Chemistry A, 2021, 9, 10304-10315.	5.2	65
7	Green and Economical Strategy for Spinning Robust Cellulose Filaments. ACS Sustainable Chemistry and Engineering, 2020, 8, 14927-14937.	3.2	20
8	Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats. Journal of Colloid and Interface Science, 2019, 540, 535-543.	5.0	22
9	Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano, 2019, 13, 6372-6382.	7.3	188
10	Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Composites Communications, 2019, 15, 58-63.	3.3	47
11	Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. Journal of Hazardous Materials, 2019, 371, 165-174.	6.5	64
12	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chemistry of Materials, 2019, 31, 2078-2087.	3.2	66
13	Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment. International Journal of Biological Macromolecules, 2019, 126, 68-73.	3.6	28
14	Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohydrate Polymers, 2019, 210, 9-16.	5.1	66
15	Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Applied Surface Science, 2018, 437, 294-303.	3.1	63
16	Promoting osteogenic differentiation in pre-osteoblasts and reducing tibial fracture healing time using functional nanofibers. Nano Research, 2018, 11, 3658-3677.	5.8	38
17	A versatile and injectable poly(methyl methacrylate) cement functionalized with quaternized chitosan-glycerophosphate/nanosized hydroxyapatite hydrogels. Materials Science and Engineering C, 2018, 90, 264-272.	3.8	30
18	Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polymer Chemistry, 2017, 8, 2913-2921.	1.9	165

#	Article	IF	CITATION
19	Regulating the gaps between folds on the surface of silk fibroin membranes via LBL deposition for improving their biomedical properties. Colloids and Surfaces B: Biointerfaces, 2017, 154, 228-238.	2.5	30
20	Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. International Journal of Biological Macromolecules, 2017, 102, 789-795.	3.6	41
21	Rectorite-intercalated nanoparticles for improving controlled release of doxorubicin hydrochloride. International Journal of Biological Macromolecules, 2017, 101, 815-822.	3.6	16
22	Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. Journal of Hazardous Materials, 2017, 324, 365-372.	6.5	95
23	Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine. Colloids and Surfaces B: Biointerfaces, 2017, 149, 271-279.	2.5	22
24	Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption. Applied Surface Science, 2017, 426, 545-553.	3.1	42
25	Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. Colloids and Surfaces B: Biointerfaces, 2016, 145, 643-652.	2.5	42
26	Spherical and rodlike inorganic nanoparticle regulated the orientation of carbon nanotubes in polymer nanofibers. Chemical Physics Letters, 2016, 650, 82-87.	1.2	19
27	Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application. Carbohydrate Polymers, 2015, 121, 428-435.	5.1	68
28	Fabrication of rectorite-contained nanoparticles for drug delivery with a green and one-step synthesis method. International Journal of Pharmaceutics, 2015, 493, 426-433.	2.6	26
29	Protein–polymer co-induced exfoliated layered silicate structure based nanofibrous mats and their cytotoxicity. RSC Advances, 2014, 4, 8867.	1.7	15
30	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305