Thomas Curran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872375/publications.pdf Version: 2024-02-01

		1299	1024
246	56,321	109	235
papers	citations	h-index	g-index
251	251	251	28161
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stimulus-Transcription Coupling in the Nervous System: Involvement of the Inducible Proto-Oncogenes fos and jun. Annual Review of Neuroscience, 1991, 14, 421-451.	5.0	2,558
2	Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 2002, 415, 436-442.	13.7	2,154
3	Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science, 1988, 240, 1328-1331.	6.0	1,889
4	Mapping patterns of c-fos expression in the central nervous system after seizure. Science, 1987, 237, 192-197.	6.0	1,743
5	Fos and jun: The AP-1 connection. Cell, 1988, 55, 395-397.	13.5	1,638
6	A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 1995, 374, 719-723.	13.7	1,615
7	Redox regulation of fos and jun DNA-binding activity in vitro. Science, 1990, 249, 1157-1161.	6.0	1,560
8	Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature, 1984, 312, 716-720.	13.7	1,425
9	A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell, 1988, 53, 37-43.	13.5	1,246
10	Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3720-3724.	3.3	1,240
11	Role of ion flux in the control of c-fos expression. Nature, 1986, 322, 552-555.	13.7	997
12	Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends in Neurosciences, 1989, 12, 459-462.	4.2	879
13	Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme EMBO Journal, 1992, 11, 3323-3335.	3.5	830
14	Continuous c-fos expression precedes programmed cell death in vivo. Nature, 1993, 363, 166-169.	13.7	795
15	Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2005, 8, 323-335.	7.7	758
16	The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature, 1993, 365, 352-355.	13.7	746
17	Reelin Is a Ligand for Lipoprotein Receptors. Neuron, 1999, 24, 471-479.	3.8	744
18	Fos-associated protein p39 is the product of the jun proto-oncogene. Science, 1988, 240, 1010-1016.	6.0	688

#	Article	IF	CITATIONS
19	The Genetic Landscape of the Childhood Cancer Medulloblastoma. Science, 2011, 331, 435-439.	6.0	652
20	Common DNA binding site for Fos protein complexesand transcription factor AP-1. Cell, 1988, 52, 471-480.	13.5	639
21	FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. Journal of Virology, 1982, 44, 674-682.	1.5	636
22	Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity EMBO Journal, 1992, 11, 653-665.	3.5	627
23	Role of the Reelin Signaling Pathway in Central Nervous System Development. Annual Review of Neuroscience, 2001, 24, 1005-1039.	5.0	619
24	Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations. Journal of Clinical Oncology, 2006, 24, 1924-1931.	0.8	617
25	c-fos protein can induce cellular transformation: A novel mechanism of activation of a cellular oncogene. Cell, 1984, 36, 51-60.	13.5	613
26	Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science, 1989, 243, 1695-1699.	6.0	608
27	Scrambler and yotari disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature, 1997, 389, 730-733.	13.7	604
28	Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini. Cell, 1983, 32, 1241-1255.	13.5	587
29	Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. Science, 1990, 250, 1259-1262.	6.0	568
30	The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science, 1988, 239, 1150-1153.	6.0	552
31	Regulation of proenkephalin by Fos and Jun. Science, 1989, 246, 1622-1625.	6.0	551
32	fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen Molecular and Cellular Biology, 1988, 8, 2063-2069.	1.1	547
33	Viral and cellular fos proteins: A comparative analysis. Cell, 1984, 36, 259-268.	13.5	540
34	Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science, 1985, 229, 1265-1268.	6.0	496
35	Regional and Cellular Patterns of <i>reelin</i> mRNA Expression in the Forebrain of the Developing and Adult Mouse. Journal of Neuroscience, 1998, 18, 7779-7799.	1.7	496
36	Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro Genes and Development, 1988, 2, 1687-1699.	2.7	495

#	Article	IF	CITATIONS
37	Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/â^'p53â^'/â^' mice. Cancer Cell, 2004, 6, 229-240.	7.7	491
38	Reelin Is a Secreted Glycoprotein Recognized by the CR-50 Monoclonal Antibody. Journal of Neuroscience, 1997, 17, 23-31.	1.7	489
39	The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice Proceedings of the United States of America, 1996, 93, 8919-8923.	3.3	477
40	Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron, 1994, 13, 325-338.	3.8	457
41	Complete nucleotide sequence of a human c-onc gene: deduced amino acid sequence of the human c-fos protein Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 3183-3187.	3.3	450
42	Identification of redox/repair protein Ref-1 as a potent activator of p53 Genes and Development, 1997, 11, 558-570.	2.7	424
43	Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science, 1993, 262, 750-754.	6.0	407
44	Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function EMBO Journal, 1996, 15, 3006-3015.	3.5	377
45	Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog–Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. Journal of Clinical Oncology, 2015, 33, 2646-2654.	0.8	368
46	The Hedgehog's tale: developing strategies for targeting cancer. Nature Reviews Cancer, 2011, 11, 493-501.	12.8	364
47	Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron, 1989, 3, 359-365.	3.8	356
48	An Enhanced Immune Response in Mice Lacking the Transcription Factor NFAT1. Science, 1996, 272, 892-895.	6.0	356
49	Thyroid hormone receptor β is essential for development of auditory function. Nature Genetics, 1996, 13, 354-357.	9.4	350
50	Small Molecule Inhibition of GDC-0449 Refractory Smoothened Mutants and Downstream Mechanisms of Drug Resistance. Cancer Research, 2011, 71, 435-444.	0.4	339
51	Fos-Jun heterodimers and jun homodimers bend DNA in opposite orientations: Implications for transcription factor cooperativity. Cell, 1991, 66, 317-326.	13.5	337
52	The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains Proceedings of the United States of America, 1994, 91, 23-27.	3.3	337
53	Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. Journal of Neuroscience Research, 1989, 24, 72-80.	1.3	333
54	Induction of c-fos during myelomonocytic differentiation and macrophage proliferation. Nature, 1985, 314, 546-548.	13.7	332

#	Article	IF	CITATIONS
55	Fos: An immediate-early transcription factor in neurons. Journal of Neurobiology, 1995, 26, 403-412.	3.7	329
56	The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes Genes and Development, 1989, 3, 173-184.	2.7	308
57	Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron, 1995, 14, 241-252.	3.8	301
58	Structure of the FBJ murine osteosarcoma virus genome: molecular cloning of its associated helper virus and the cellular homolog of the v-fos gene from mouse and human cells Molecular and Cellular Biology, 1983, 3, 914-921.	1.1	281
59	Viral and cellular fos proteins are complexed with a 39,000-dalton cellular protein Molecular and Cellular Biology, 1985, 5, 167-172.	1.1	265
60	Role of reelin in the control of brain development1Published on the World Wide Web on 21 October 1997.1. Brain Research Reviews, 1998, 26, 285-294.	9.1	250
61	Expression and purification of the leucine zipper and DNA-binding domains of Fos and Jun: both Fos and Jun contact DNA directly Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1032-1036.	3.3	247
62	Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes EMBO Journal, 1985, 4, 1193-1197.	3.5	240
63	Fos-lacZ transgenic mice: Mapping sites of gene induction in the central nervous system. Neuron, 1992, 8, 13-23.	3.8	239
64	Memories offos. BioEssays, 1987, 7, 255-258.	1.2	236
64 65	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390.	1.2 6.0	236 231
64 65 66	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003.	1.2 6.0 1.1	236 231 228
64 65 66	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003. Proto-oncogene transcription factors and epilepsy. Trends in Pharmacological Sciences, 1991, 12, 343-349.	1.2 6.0 1.1 4.0	236 231 228 220
 64 65 66 67 68 	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003. Proto-oncogene transcription factors and epilepsy. Trends in Pharmacological Sciences, 1991, 12, 343-349. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4987-4991.	1.2 6.0 1.1 4.0 3.3	236 231 228 220 215
 64 65 66 67 68 69 	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003. Proto-oncogene transcription factors and epilepsy. Trends in Pharmacological Sciences, 1991, 12, 343-349. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4987-4991. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements Molecular and Cellular Biology, 1990, 10, 4243-4255.	1.2 6.0 1.1 4.0 3.3 1.1	236 231 228 220 215 214
 64 65 66 67 68 69 70 	Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003. Proto-oncogene transcription factors and epilepsy. Trends in Pharmacological Sciences, 1991, 12, 343-349. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4987-4991. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArC elements Molecular and Cellular Biology, 1990, 10, 4243-4255. The Fos protein complex is associated with DNA in isolated nuclei and binds to DNA cellulose. Science, 1986, 234, 1417-1419.	1.2 6.0 1.1 4.0 3.3 1.1 6.0	236 231 228 220 215 214 206
 64 65 66 67 68 69 70 71 	 Memories offos. BioEssays, 1987, 7, 255-258. Role of DNA 5-Methylcytosine Transferase in Cell Transformation by fos. Science, 1999, 283, 387-390. Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia Molecular and Cellular Biology, 1994, 14, 5997-6003. Proto-oncogene transcription factors and epilepsy. Trends in Pharmacological Sciences, 1991, 12, 343-349. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4987-4991. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements Molecular and Cellular Biology, 1990, 10, 4243-4255. The Fos protein complex is associated with DNA in isolated nuclei and binds to DNA cellulose. Science, 1986, 234, 1417-1419. Altered protein conformation on DNA binding by Fos and Jun. Nature, 1990, 347, 572-575. 	1.2 6.0 1.1 4.0 3.3 1.1 6.0 13.7	236 231 228 220 215 214 206 204

#	Article	IF	CITATIONS
73	Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene, 2007, 26, 6442-6447.	2.6	204
74	Transient Inhibition of the Hedgehog Pathway in Young Mice Causes Permanent Defects in Bone Structure. Cancer Cell, 2008, 13, 249-260.	7.7	204
75	BGEM: An In Situ Hybridization Database of Gene Expression in the Embryonic and Adult Mouse Nervous System. PLoS Biology, 2006, 4, e86.	2.6	203
76	DNA bending by Fos and Jun: the flexible hinge model. Science, 1991, 254, 1210-1214.	6.0	201
77	Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains Molecular and Cellular Biology, 1991, 11, 3624-3632.	1.1	197
78	Rescue of Ataxia and Preplate Splitting by Ectopic Expression of Reelin in reeler Mice. Neuron, 2002, 33, 573-586.	3.8	196
79	Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9990-9994.	3.3	194
80	Phase I Study of Vismodegib in Children with Recurrent or Refractory Medulloblastoma: A Pediatric Brain Tumor Consortium Study. Clinical Cancer Research, 2013, 19, 6305-6312.	3.2	180
81	Reelin Regulates the Development and Synaptogenesis of the Layer-Specific Entorhino-Hippocampal Connections. Journal of Neuroscience, 1999, 19, 1345-1358.	1.7	178
82	Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-dalton phosphoprotein. Journal of Virology, 1982, 42, 114-122.	1.5	176
83	Immediate-early genes: ten years on. Trends in Neurosciences, 1995, 18, 66-67.	4.2	175
84	Disabled-1 Binds to the Cytoplasmic Domain of Amyloid Precursor-Like Protein 1. Journal of Neuroscience, 1999, 19, 7507-7515.	1.7	171
85	Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium, 1988, 9, 303-311.	1.1	168
86	Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro Molecular and Cellular Biology, 1993, 13, 3782-3791.	1.1	166
87	Induction of c-fos mRNA Expression by Afterdischarge in the Hippocampus of Naive and Kindled Rats. Journal of Neurochemistry, 1990, 55, 1050-1055.	2.1	164
88	Selective DNA bending by a variety of bZIP proteins Molecular and Cellular Biology, 1993, 13, 5479-5489.	1.1	157
89	Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development (Cambridge), 2010, 137, 3753-3761.	1.2	155
90	Thyroid Hormone Regulates <i>reelin</i> and <i>dab1</i> Expression During Brain Development. Journal of Neuroscience, 1999, 19, 6979-6993.	1.7	150

#	Article	IF	CITATIONS
91	Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. Journal of Neuroscience, 1995, 15, 4238-4249.	1.7	149
92	A molecular fingerprint for medulloblastoma. Cancer Research, 2003, 63, 5428-37.	0.4	149
93	Cerebellar Disorganization Characteristic of Reeler in Scrambler Mutant Mice Despite Presence of Reelin. Journal of Neuroscience, 1997, 17, 8767-8777.	1.7	148
94	Shh Pathway Activity Is Down-Regulated in Cultured Medulloblastoma Cells: Implications for Preclinical Studies. Cancer Research, 2006, 66, 4215-4222.	0.4	147
95	Crk and Crk-Like Play Essential Overlapping Roles Downstream of Disabled-1 in the Reelin Pathway. Journal of Neuroscience, 2008, 28, 13551-13562.	1.7	143
96	Microinjection of transforming ras protein induces c-fos expression Molecular and Cellular Biology, 1987, 7, 523-527.	1.1	141
97	Targeting Medulloblastoma: Small-Molecule Inhibitors of the Sonic Hedgehog Pathway as Potential Cancer Therapeutics. Cancer Research, 2005, 65, 4975-4978.	0.4	140
98	Gli1 is important for medulloblastoma formation in Ptc1+/â^' mice. Oncogene, 2005, 24, 4026-4036.	2.6	137
99	Mutant mice with scrambled brains: understanding the signaling pathways that control cell positioning in the CNS. Genes and Development, 1999, 13, 2758-2773.	2.7	137
100	Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts Molecular and Cellular Biology, 1992, 12, 4694-4705.	1.1	134
101	The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes and Development, 2005, 19, 2656-2667.	2.7	133
102	Reeler: new tales on an old mutant mouse. BioEssays, 1998, 20, 235-244.	1.2	131
103	Transcription factor interactions: basics on zippers. Current Opinion in Structural Biology, 1991, 1, 71-79.	2.6	127
104	FBR murine osteosarcoma virus II. Nucleotide sequence of the provirus reveals that the genome contains sequences acquired from two cellular genes. Virology, 1984, 135, 229-243.	1.1	126
105	The human reelin gene: isolation, sequencing, and mapping on chromosome 7 Genome Research, 1997, 7, 157-164.	2.4	124
106	Deletion of Shp2 in the Brain Leads to Defective Proliferation and Differentiation in Neural Stem Cells and Early Postnatal Lethality. Molecular and Cellular Biology, 2007, 27, 6706-6717.	1.1	124
107	Identification of Reelin-induced Sites of Tyrosyl Phosphorylation on Disabled 1. Journal of Biological Chemistry, 2001, 276, 16008-16014.	1.6	122
108	The Reelin Pathway Modulates the Structure and Function of Retinal Synaptic Circuitry. Neuron, 2001, 31, 929-941.	3.8	121

#	Article	IF	CITATIONS
109	Crystal Structures of the Dab Homology Domains of Mouse Disabled 1 and 2. Journal of Biological Chemistry, 2003, 278, 36572-36581.	1.6	117
110	THE HEDGEHOG PATHWAY AND NEUROLOGICAL DISORDERS. Annual Review of Neuroscience, 2006, 29, 539-563.	5.0	107
111	Mouse embryos cloned from brain tumors. Cancer Research, 2003, 63, 2733-6.	0.4	105
112	FBR murine osteosarcoma virus I. Molecular analysis and characterization of a 75,000-Da gag-fos fusion product. Virology, 1984, 135, 218-228.	1.1	104
113	Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. Virology, 1982, 116, 221-235.	1.1	103
114	Activation of the transforming potential of the human fos proto-oncogene requires message stabilization and results in increased amounts of partially modified fos protein Molecular and Cellular Biology, 1988, 8, 5521-5527.	1.1	100
115	Cyclin-Dependent Kinase 5 Phosphorylates Disabled 1 Independently of Reelin Signaling. Journal of Neuroscience, 2002, 22, 4869-4877.	1.7	100
116	Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1. Molecular Brain Research, 2003, 112, 33-45.	2.5	100
117	Barium modulates c-fos expression and post-translational modification Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8521-8524.	3.3	99
118	Cell transformation by c-fos requires an extended period of expression and is independent of the cell cycle Molecular and Cellular Biology, 1994, 14, 4295-4310.	1.1	97
119	Disabled-1 is expressed in type All amacrine cells in the mouse retina. Journal of Comparative Neurology, 2000, 424, 327-338.	0.9	95
120	Patched2 Modulates Tumorigenesis in Patched1 Heterozygous Mice. Cancer Research, 2006, 66, 6964-6971.	0.4	95
121	Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes and Development, 2010, 24, 2451-2461.	2.7	93
122	Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. Journal of Clinical Investigation, 2012, 122, 674-692.	3.9	92
123	Expression of c-fos in NIH3T3 cells is very low but inducible throughout the cell cycle EMBO Journal, 1986, 5, 695-700.	3.5	89
124	Thyrotropin Regulation by Thyroid Hormone in Thyroid Hormone Receptor β-Deficient Mice ¹ . Endocrinology, 1997, 138, 3624-3629.	1.4	89
125	Menin Epigenetically Represses Hedgehog Signaling in MEN1 Tumor Syndrome. Cancer Research, 2013, 73, 2650-2658.	0.4	87
126	Detection of the reelin breakpoint in reeler mice. Molecular Brain Research, 1996, 39, 234-236.	2.5	86

#	Article	IF	CITATIONS
127	Fos and jun cooperate in transcriptional regulation via heterologous activation domains Molecular and Cellular Biology, 1990, 10, 5532-5535.	1.1	84
128	Regulation of a fos-lacZ fusion gene: a paradigm for quantitative analysis of stimulus-transcription coupling Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5665-5669.	3.3	84
129	Cardiovascular and Craniofacial Defects in Crk- Null Mice. Molecular and Cellular Biology, 2006, 26, 6272-6282.	1.1	82
130	Immediate-early genes: ten years on. Trends in Neurosciences, 1995, 18, 66-67.	4.2	79
131	Extended life span and tumorigenicity of nonestablished mouse connective tissue cells transformed by the fos oncogene of FBR-MuSV. Cell, 1985, 41, 629-637.	13.5	78
132	Identification of a Novel c-Myc Protein Interactor, JPO2, with Transforming Activity in Medulloblastoma Cells. Cancer Research, 2005, 65, 5607-5619.	0.4	72
133	Fos-Like Immunoreactivity Induced by Seizure in Mice Is Specifically Associated With Euchromatin in Neurons. European Journal of Neuroscience, 1989, 1, 46-52.	1.2	69
134	Dysfunctions in Mice by NMDA Receptor Point Mutations NR1(N598Q) and NR1(N598R). Journal of Neuroscience, 2000, 20, 2558-2566.	1.7	68
135	Transcription repression in oncogenic transformation: common targets of epigenetic repression in cells transformed by Fos, Ras or Dnmt1. Oncogene, 2004, 23, 3737-3748.	2.6	68
136	Energy transfer analysis of Fos-Jun dimerization and DNA binding Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7360-7364.	3.3	67
137	Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins. Biochemical and Biophysical Research Communications, 2004, 318, 204-212.	1.0	67
138	Differential Binding of Ligands to the Apolipoprotein E Receptor 2â€. Biochemistry, 2003, 42, 9355-9364.	1.2	66
139	Dimerization and DNA binding alter phosphorylation of Fos and Jun Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6766-6770.	3.3	63
140	Glucocorticoid Compounds Modify Smoothened Localization and Hedgehog Pathway Activity. Chemistry and Biology, 2012, 19, 972-982.	6.2	62
141	Chapter 24 Inducible proto-oncogenes of the nervous system: their contribution to transcription factors and neuroplasticity. Progress in Brain Research, 1990, 86, 287-294.	0.9	60
142	Zen and the art of Fos and Jun. Nature, 1995, 373, 199-200.	13.7	60
143	Cysteine 64 of Ref-1 Is Not Essential for Redox Regulation of AP-1 DNA Binding. Molecular and Cellular Biology, 2003, 23, 4257-4266.	1.1	60
144	Developmental expression of thyroid hormone receptor β2 protein in cone photoreceptors in the mouse. NeuroReport, 2009, 20, 627-631.	0.6	59

#	Article	IF	CITATIONS
145	Reelin mRNA expression during embryonic brain development in the chick. Journal of Comparative Neurology, 2000, 422, 448-463.	0.9	57
146	Transient induction of c-fos and c-myc in an immediate consequence of growth factor stimulation. Cancer Surveys, 1985, 4, 655-81.	1.5	57
147	Isolation of an allele of reeler by insertional mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11050-11054.	3.3	55
148	Redox Regulation of Ap-1. Advances in Experimental Medicine and Biology, 1996, , 69-75.	0.8	55
149	Design of a "minimAl" homeodomain: the N-terminal arm modulates DNA binding affinity and stabilizes homeodomain structure Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8373-8377.	3.3	52
150	Functional NMDA Receptors Are Transiently Active and Support the Survival of Purkinje Cells in Culture. Journal of Neuroscience, 1996, 16, 4651-4661.	1.7	51
151	Ubiquitinylation of Transcription Factors c-Jun and c-Fos Using Reconstituted Ubiquitinylating Enzymes. Journal of Biological Chemistry, 1996, 271, 4930-4936.	1.6	49
152	The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions. EMBO Journal, 1997, 16, 2907-2916.	3.5	48
153	Disabled-1 Interacts with a Novel Developmentally Regulated Protocadherin. Biochemical and Biophysical Research Communications, 2001, 289, 539-547.	1.0	48
154	Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma. Clinical Cancer Research, 2018, 24, 1375-1388.	3.2	46
155	CRK proteins selectively regulate T cell migration into inflamed tissues. Journal of Clinical Investigation, 2015, 125, 1019-1032.	3.9	46
156	Astrocytes Promote Medulloblastoma Progression through Hedgehog Secretion. Cancer Research, 2017, 77, 6692-6703.	0.4	45
157	Cortical development: Cdk5 gets into sticky situations. Current Biology, 2000, 10, R331-R334.	1.8	44
158	Calcium and Proto-Oncogene Involvement in the Immediate-Early Response in the Nervous System. Annals of the New York Academy of Sciences, 1989, 568, 283-290.	1.8	43
159	The fos gene product undergoes extensive post-translational modification in eukaryotic but not in prokaryotic cells. Gene, 1986, 43, 69-77.	1.0	40
160	Temporal and spatial expression of a fos-lacZ transgene in the developing nervous system. Molecular Brain Research, 1992, 16, 158-162.	2.5	39
161	Fos-Jun Dimerization Promotes Interaction of the Basic Region with TFIIE-34 and TFIIF. Molecular and Cellular Biology, 1996, 16, 2110-2118.	1.1	37
162	Medulloblastomas Derived from Cxcr6 Mutant Mice Respond to Treatment with a Smoothened Inhibitor. Cancer Research, 2007, 67, 3871-3877.	0.4	37

#	Article	IF	CITATIONS
163	Crk1/2 and CrkL form a hetero-oligomer and functionally complement each other during podocyte morphogenesis. Kidney International, 2014, 85, 1382-1394.	2.6	37
164	Inducible Proto-oncogene Transcription Factors: Third Messengers in the Brain?. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 225-234.	2.0	37
165	Genomic answers for children: Dynamic analyses of >1000 pediatric rare disease genomes. Genetics in Medicine, 2022, 24, 1336-1348.	1.1	37
166	Selective Activation of Calcium Permeability by Aspartate in Purkinje Cells. Science, 1996, 273, 1112-1114.	6.0	36
167	Generation of a Mouse Model of Atypical Teratoid/Rhabdoid Tumor of the Central Nervous System through Combined Deletion of Snf5 and p53. Cancer Research, 2015, 75, 4629-4639.	0.4	36
168	A central role for Fos in human B- and T-cell NFAT (nuclear factor of activated T cells): an acidic region is required for in vitro assembly Molecular and Cellular Biology, 1994, 14, 6886-6895.	1.1	34
169	Audiogenic seizure susceptibility in thyroid hormone receptor Î ² -deficient mice. NeuroReport, 2001, 12, 2359-2362.	0.6	34
170	Crossed signals: oncogenic transcription factors. Current Opinion in Genetics and Development, 1992, 2, 19-27.	1.5	33
171	c-Jun stimulates origin-dependent DNA unwinding by polyomavirus large Tantigen EMBO Journal, 1996, 15, 5636-5646.	3.5	32
172	Interaction of Disabled-1 and the GTPase activating protein Dab2IP in mouse brain. Molecular Brain Research, 2003, 115, 121-129.	2.5	30
173	The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress. Nature Cell Biology, 2012, 14, 87-92.	4.6	30
174	Essential roles of Crk and CrkL in fibroblast structure and motility. Oncogene, 2014, 33, 5121-5132.	2.6	30
175	The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice. PLoS ONE, 2015, 10, e0133633.	1.1	30
176	N-terminal variants of thyroid hormone receptor beta: differential function and potential contribution to syndrome of resistance to thyroid hormone Molecular Endocrinology, 1995, 9, 1202-1213.	3.7	29
177	Brain development: Integrins and the Reelin pathway. Current Biology, 2001, 11, R1032-R1035.	1.8	29
178	Thyrotropin Regulation by Thyroid Hormone in Thyroid Hormone Receptor Â-Deficient Mice. Endocrinology, 1997, 138, 3624-3629.	1.4	29
179	Differential roles for Fos and Jun in DNA-binding: redoxdependent and independent functions. Nucleic Acids Research, 1993, 21, 5831-5837.	6.5	28
180	Review : The Immediate-Early Gene Response and Neuronal Death and Regeneration. Neuroscientist, 1995, 1, 68-75.	2.6	28

#	Article	IF	CITATIONS
181	Nestin Mediates Hedgehog Pathway Tumorigenesis. Cancer Research, 2016, 76, 5573-5583.	0.4	28
182	Fos and Jun. Oncogenic Transcription Factors Tohoku Journal of Experimental Medicine, 1992, 168, 169-174.	0.5	27
183	Glutamate, Immediate-Early Genes, and Cell Death in the Nervous System. Annals of the New York Academy of Sciences, 1993, 679, 132-141.	1.8	27
184	Crk proteins transduce FGF signaling to promote lens fiber cell elongation. ELife, 2018, 7, .	2.8	27
185	Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Reports, 2021, 34, 108917.	2.9	27
186	Beyond the Second Messenger: Oncogenes and Transcription Factors. Cold Spring Harbor Symposia on Quantitative Biology, 1988, 53, 769-777.	2.0	27
187	Regulation of proto-oncogenes in rat parotid acinar cells in vitro after stimulation of β- adrenergic receptors. Experimental Cell Research, 1988, 179, 194-203.	1.2	26
188	Absence of thyroid hormone receptor β–retinoid X receptor interactions in auditory function and in the pituitary–thyroid axis. NeuroReport, 1998, 9, 2933-2937.	0.6	26
189	Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biology, 2018, 8, .	1.5	26
190	[15] Analysis of c-Fos and c-Jun redox-dependent DNA binding activity. Methods in Enzymology, 1994, 234, 163-174.	0.4	25
191	Deletion of the gag region from FBR murine osteosarcoma virus does not affect its enhanced transforming activity. Journal of Virology, 1985, 55, 521-526.	1.5	25
192	Components of the Reelin signaling pathway are expressed in the spinal cord. Journal of Comparative Neurology, 2004, 470, 210-219.	0.9	24
193	N-terminal variants of thyroid hormone receptor beta: differential function and potential contribution to syndrome of resistance to thyroid hormone. Molecular Endocrinology, 1995, 9, 1202-1213.	3.7	24
194	Hedgehog's other great trick. Nature, 2008, 455, 293-294.	13.7	23
195	Apoptosis in the nervous system: new revelations Journal of Clinical Pathology, 1995, 48, 7-12.	1.0	22
196	Regulation of proto-oncogene expression in adult and developing lungs Molecular and Cellular Biology, 1993, 13, 3213-3220.	1.1	20
197	Fos and Jun: intermediary transcription factors. Molecular Aspects of Cellular Regulation, 1991, 6, 295-308.	1.4	20
198	A transcriptome map of cellular transformation by the fos oncogene. Molecular Cancer, 2005, 4, 19.	7.9	18

#	Article	IF	CITATIONS
199	Gene expression profiles of mouse retinas during the second and third postnatal weeks. Brain Research, 2006, 1098, 113-125.	1.1	18
200	Ectopic expression of reelin alters migration of sympathetic preganglionic neurons in the spinal cord. Journal of Comparative Neurology, 2009, 515, 260-268.	0.9	18
201	Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). Journal of Biological Chemistry, 2016, 291, 26273-26290.	1.6	18
202	Gene dosage in mice—BAC to the future. Nature Genetics, 1999, 22, 319-320.	9.4	17
203	Smart transcription factors. Nature, 1995, 376, 292-293.	13.7	15
204	A gene expression approach to mapping the functional maturation of the hippocampus. Molecular Brain Research, 1998, 63, 25-34.	2.5	15
205	A call to action: Issuing a diversity and inclusion challenge to research organizations. Clinical and Translational Science, 2021, 14, 2095-2098.	1.5	15
206	The effects of phorbol ester and Ca ionophore on c-fos and c-myc expression and on DNA synthesis in human lymphocytes are not directly related. Biochemical and Biophysical Research Communications, 1987, 148, 435-442.	1.0	14
207	Developmental expression of Fos-lacZ in the brains of postnatal transgenic rats. Developmental Brain Research, 1996, 93, 191-197.	2.1	14
208	Developmental mouse brain gene expression maps. Journal of Physiology, 2006, 575, 343-346.	1.3	14
209	Levels of fos, ets2, and myb proto-oncogene RNAs correlate with segregation of chromosome 11 of normal cells and with suppression of tumorigenicity in human cell hybrids Molecular and Cellular Biology, 1987, 7, 2941-2946.	1.1	12
210	Transcription Factors as Molecular Mediators in Cell Death. Annals of the New York Academy of Sciences, 1994, 747, 172-182.	1.8	12
211	PTHrP Treatment Fails to Rescue Bone Defects Caused by Hedgehog Pathway Inhibition in Young Mice. Toxicologic Pathology, 2011, 39, 478-485.	0.9	12
212	Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer. Neuro-Oncology Advances, 2022, 4, vdac024.	0.4	12
213	Use of Fluorescence Resonance Energy Transfer To Estimate Intramolecular Distances in the Msx-1 Homeodomain. Biochemistry, 1995, 34, 15276-15281.	1.2	11
214	Spontaneous and evoked glutamate signalling influences Fos-lacZ expression and pyramidal cell death in hippocampal slice cultures from transgenic rats. Molecular Brain Research, 1995, 34, 197-208.	2.5	11
215	A neurogenomics approach to gene expression analysis in the developing brain. Molecular Brain Research, 2004, 132, 116-127.	2.5	11
216	Fosvergnügen The Excitement of Immediate-Early Genes. Annals of the New York Academy of Sciences, 1991, 627, 115-123.	1.8	10

#	Article	IF	CITATIONS
217	Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clinical Cancer Research, 2019, 25, 6475-6486.	3.2	10
218	Statins repress hedgehog signaling in medulloblastoma with no bone toxicities. Oncogene, 2021, 40, 2258-2272.	2.6	10
219	mPPP1R16B is a novel mouse protein phosphatase 1 targeting subunit whose mRNA is located in cell bodies and dendrites of neurons in four distinct regions of the brain. Gene Expression Patterns, 2002, 1, 143-149.	0.3	8
220	A prospective phase II study to determine the efficacy of GDC 0449 (vismodegib) in adults with recurrent medulloblastoma (MB): A Pediatric Brain Tumor Consortium study (PBTC 25B) Journal of Clinical Oncology, 2013, 31, 2035-2035.	0.8	8
221	Yayoi era mutation disrupts brain and muscle. Nature Medicine, 1998, 4, 1002-1003.	15.2	7
222	Medulloblastoma and Retinoblastoma: Oncology Recapitulates Ontogeny. Cell Cycle, 2004, 3, 915-917.	1.3	7
223	Cortical development in the presenilinâ€1 null mutant mouse fails after splitting of the preplate and is not due to a failure of reelinâ€dependent signaling. Developmental Dynamics, 2008, 237, 2405-2414.	0.8	7
224	Whole-exome identifies RXRG and TH germline variants in familial isolated prolactinoma. Cancer Genetics, 2016, 209, 251-257.	0.2	7
225	Dendritic planarity of Purkinje cells is independent of Reelin signaling. Brain Structure and Function, 2015, 220, 2263-2273.	1.2	6
226	Lost in Translation: The Future of Cancer Research?. Clinical Cancer Research, 2005, 11, 4644-4645.	3.2	5
227	Mouse models and mouse supermodels. EMBO Molecular Medicine, 2010, 2, 385-386.	3.3	5
228	Crk and CrkL are required for cell transformation by vâ€ <i>fos</i> and vâ€ <i>ras</i> . Molecular Carcinogenesis, 2016, 55, 97-104.	1.3	5
229	Requirement for Crk and CrkL during postnatal lens development. Biochemical and Biophysical Research Communications, 2020, 529, 603-607.	1.0	5
230	Reeler gene discrepancies. Nature Genetics, 1995, 11, 12-12.	9.4	3
231	Alternative Splicing Disabled by Nova2. Neuron, 2010, 66, 811-813.	3.8	3
232	Cellular Immediate-Early Genes in the Nervous System: Genes for All Reasons?. , 1994, , 301-315.		3
233	Reeler: new tales on an old mutant mouse. BioEssays, 1998, 20, 235-244.	1.2	2
234	Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2006, 9, 70.	7.7	1

#	Article	IF	CITATIONS
235	Reply to the Letter to the Editor by Diamandis. Clinical Cancer Research, 2006, 12, 669.1-669.	3.2	1
236	Neurobiology: Reelin Mediates Form and Function. Current Biology, 2014, 24, R1089-R1092.	1.8	1
237	Quantitative assessment of glioblastoma phenotypes inÂvitro establishes cell migration as a robust readout of Crk and CrkL activity. Journal of Biological Chemistry, 2021, 296, 100390.	1.6	1
238	fos Oncogene. , 2002, , 243-248.		1
239	Crossed signals: oncogenic transcription factors. Current Biology, 1992, 2, 164.	1.8	Ο
240	Genetic damage and escape from proliferation control. International Journal of Cancer, 1993, 53, 161-177.	2.3	0
241	c-fos and Signal Transduction In Vivo. Toxicology in Vitro, 1998, 12, 523-524.	1.1	Ο
242	From Bings to Biology: Taking a Different Path in Cancer Research. Cancer Biology and Therapy, 2003, 2, 456-459.	1.5	0
243	Q&A: Tom Curran on Translational Research. Cancer Discovery, 2012, 2, 99-99.	7.7	Ο
244	Redox Pioneer: Professor Stuart A. Lipton. Antioxidants and Redox Signaling, 2013, 19, 757-764.	2.5	0
245	Targeting Children's Brain Tumors: Development of Hedgehog Pathway Inhibitors for Medulloblastoma. Research and Perspectives in Alzheimer's Disease, 2011, , 57-71.	0.1	Ο
246	Regulation of c-fos Expression by Voltage-Dependent Calcium Channels. , 1989, , 305-312.		0