
## **Gregory M Dick**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872327/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hypoxemia Augments the Local Metabolic Error Signal and Improves Coronary Pressureâ€Flow<br>Autoregulation. FASEB Journal, 2022, 36, .                                                                                                      | 0.2 | 0         |
| 2  | Smooth Muscle Contraction Is Regulated by Chloride Channels: Functional Evidence for TMEM16A in Porcine Coronary Arteries. FASEB Journal, 2021, 35, .                                                                                       | 0.2 | 0         |
| 3  | Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels. Basic Research in Cardiology, 2021, 116, 35.                                                        | 2.5 | 5         |
| 4  | Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With<br>Coronary Flow Modeling. Frontiers in Physiology, 2018, 9, 580.                                                                         | 1.3 | 9         |
| 5  | Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior. Basic<br>Research in Cardiology, 2018, 113, 33.                                                                                                   | 2.5 | 34        |
| 6  | Regulation of Coronary Blood Flow. , 2017, 7, 321-382.                                                                                                                                                                                      |     | 198       |
| 7  | Dynamic Regulation of the Subunit Composition of BK Channels in Smooth Muscle. Circulation Research, 2017, 121, 594-595.                                                                                                                    | 2.0 | 0         |
| 8  | Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction. Basic Research in Cardiology, 2016, 111, 21.                                                                                        | 2.5 | 35        |
| 9  | Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Research in<br>Cardiology, 2016, 111, 56.                                                                                                             | 2.5 | 20        |
| 10 | Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain<br>imaging. Journal of Molecular and Cellular Cardiology, 2016, 90, 74-83.                                                          | 0.9 | 33        |
| 11 | K <sub>V</sub> 7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H693-H704.             | 1.5 | 17        |
| 12 | Diphenyl Phosphine Oxideâ€1â€Sensitive K <sup>+</sup> Channels Contribute to the Vascular Tone and Reactivity of Resistance Arteries From Brain and Skeletal Muscle. Microcirculation, 2015, 22, 315-325.                                   | 1.0 | 7         |
| 13 | Bisphenol A activates BK channels through effects on $\hat{I}_{\pm}$ and $\hat{I}_{2}^{2}1$ subunits. Channels, 2014, 8, 249-257.                                                                                                           | 1.5 | 13        |
| 14 | Diabetes mellitus reduces the function and expression of ATP-dependent K+ channels in cardiac mitochondria. Life Sciences, 2013, 92, 664-668.                                                                                               | 2.0 | 23        |
| 15 | Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity. Basic Research in Cardiology, 2013, 108, 370.                                                                                 | 2.5 | 19        |
| 16 | Interactions between A <sub>2A</sub> adenosine receptors, hydrogen peroxide, and K <sub>ATP</sub><br>channels in coronary reactive hyperemia. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2013, 304, H1294-H1301. | 1.5 | 29        |
| 17 | Adenosine A1 Receptors Link to Smooth Muscle Contraction Via CYP4a, protein kinase C-α, and ERK1/2.<br>Journal of Cardiovascular Pharmacology, 2013, 62, 78-83.                                                                             | 0.8 | 27        |
| 18 | Role of Voltageâ€dependent Kv7 Channels in the Regulation of Coronary Blood Flow. FASEB Journal,<br>2013, 27, 1185.4.                                                                                                                       | 0.2 | 0         |

**GREGORY M DICK** 

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Perivascular adipose tissue impairs H2O2â€mediated vasodilation in the coronary circulation. FASEB<br>Journal, 2013, 27, 1195.4.                                                                               | 0.2 | 0         |
| 20 | Adenosine A 1 receptor signaling inhibits BK channels. FASEB Journal, 2013, 27, 877.1.                                                                                                                         | 0.2 | 0         |
| 21 | Heart of the matter: Coronary dysfunction in metabolic syndrome. Journal of Molecular and Cellular<br>Cardiology, 2012, 52, 848-856.                                                                           | 0.9 | 58        |
| 22 | Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow.<br>Journal of Molecular and Cellular Cardiology, 2012, 52, 912-919.                                                 | 0.9 | 48        |
| 23 | Penitrem A as a Tool for Understanding the Role of Large Conductance Ca2+/Voltage-Sensitive K+<br>Channels in Vascular Function. Journal of Pharmacology and Experimental Therapeutics, 2012, 342,<br>453-460. | 1.3 | 16        |
| 24 | Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation.<br>Basic Research in Cardiology, 2012, 107, 264.                                                              | 2.5 | 35        |
| 25 | Differential expression of mitoK ATP subunits in cardiac mitochondrial subpopulations and the influence of Type I diabetes. FASEB Journal, 2012, 26, .                                                         | 0.2 | Ο         |
| 26 | Interactions between A 2A adenosine receptor, hydrogen peroxide, and K ATP channel in coronary reactive hyperemia. FASEB Journal, 2012, 26, 863.6.                                                             | 0.2 | 0         |
| 27 | Bisphenol A decreases BK channel expression in rat aorta via genomic mechanisms. FASEB Journal, 2012, 26, 1140.2.                                                                                              | 0.2 | Ο         |
| 28 | Sensitivity to block by penitrem A is reduced in human BK channels containing the β1 subunit. FASEB<br>Journal, 2011, 25, 1021.3.                                                                              | 0.2 | 0         |
| 29 | Bisphenol A activates Maxiâ€K (K <sub>Ca</sub> 1.1) channels in coronary smooth muscle. British Journal<br>of Pharmacology, 2010, 160, 160-170.                                                                | 2.7 | 51        |
| 30 | Contribution of Adenosine A2A and A2B Receptors to Ischemic Coronary Dilation: Role of KV and KATP<br>Channels. Microcirculation, 2010, 17, 600-607.                                                           | 1.0 | 66        |
| 31 | Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic<br>syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H966-H973.             | 1.5 | 39        |
| 32 | Metabolic syndrome reduces the contribution of K <sup>+</sup> channels to ischemic coronary<br>vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298,<br>H1182-H1189.     | 1.5 | 40        |
| 33 | Role of potassium channels in coronary vasodilation. Experimental Biology and Medicine, 2010, 235, 10-22.                                                                                                      | 1.1 | 81        |
| 34 | Contribution of Adenosine A 2A and A 2B Receptor Subtypes to Coronary Reactive Hyperemia: Role of K<br>V and K ATP Channels. FASEB Journal, 2010, 24, 1034.8.                                                  | 0.2 | 0         |
| 35 | Bisphenol A activates Maxiâ€K channels in coronary smooth muscle. FASEB Journal, 2010, 24, 986.2.                                                                                                              | 0.2 | 0         |
| 36 | Aging and muscle fiber type alter K <sup>+</sup> channel contributions to the myogenic response in skeletal muscle arterioles. Journal of Applied Physiology, 2009, 107, 389-398.                              | 1.2 | 44        |

**GREGORY M DICK** 

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Impaired function of coronary BK <sub>Ca</sub> channels in metabolic syndrome. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2009, 297, H1629-H1637.                                               | 1.5 | 77        |
| 38 | Endogenous Adiposeâ€Derived Factors Diminish Coronary Endothelial Function via Inhibition of Nitric<br>Oxide Synthase. Microcirculation, 2008, 15, 417-426.                                                                | 1.0 | 41        |
| 39 | Adenosine A1 receptors in neointimal hyperplasia and in-stent stenosis in Ossabaw miniature swine.<br>Coronary Artery Disease, 2008, 19, 27-31.                                                                            | 0.3 | 34        |
| 40 | Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic<br>syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2489-H2496.                     | 1.5 | 113       |
| 41 | Voltage-dependent K <sup>+</sup> channels regulate the duration of reactive hyperemia in the canine<br>coronary circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294,<br>H2371-H2381. | 1.5 | 57        |
| 42 | Impaired contribution of voltageâ€dependent K + channels to ischemic coronary vasodilation in<br>Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.3.                                                   | 0.2 | 0         |
| 43 | Perivascular adipose tissue impairs coronary endothelial function via protein kinase Câ€beta dependent<br>phosphorylation of nitric oxide synthase. FASEB Journal, 2008, 22, 743.9.                                        | 0.2 | 1         |
| 44 | Role of large conductance Ca 2+ â€activated K + (BK Ca ) channels in local metabolic coronary<br>vasodilation in Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.4.                                   | 0.2 | 0         |
| 45 | Restoration of coronary endothelial function in obese Zucker rats by a low-carbohydrate diet.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2093-H2099.                                | 1.5 | 31        |
| 46 | Redox-dependent coronary metabolic dilation. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2007, 293, H3720-H3725.                                                                                 | 1.5 | 58        |
| 47 | Knockout Mice Reveal That the Angiotensin II type 1B Receptor Links to Smooth Muscle Contraction.<br>American Journal of Hypertension, 2007, 20, 335-337.                                                                  | 1.0 | 21        |
| 48 | H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1404-H1411.                          | 1.5 | 79        |
| 49 | Mechanisms of Coronary Dysfunction in Obesity and Insulin Resistance. Microcirculation, 2007, 14, 317-338.                                                                                                                 | 1.0 | 65        |
| 50 | PERIVASCULAR ADIPOSE TISSUE ALTERS CORONARY ARTERIAL SMOOTH MUSCLE AND ENDOTHELIAL FUNCTION. FASEB Journal, 2007, 21, A1228.                                                                                               | 0.2 | 0         |
| 51 | Adipokines and coronary vasomotor dysfunction. Experimental Biology and Medicine, 2007, 232, 727-36.                                                                                                                       | 1.1 | 18        |
| 52 | Coronary Vasomotor Reactivity to Endothelin-1 in the Prediabetic Metabolic Syndrome.<br>Microcirculation, 2006, 13, 209-218.                                                                                               | 1.0 | 24        |
| 53 | H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+<br>channels. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2473-H2482.                     | 1.5 | 89        |
| 54 | Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary<br>circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291,<br>H2997-H3002.        | 1.5 | 73        |

**GREGORY M DICK** 

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydrogen Peroxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2614-2621.                                                                                                                                                      | 1.1 | 164       |
| 56 | Reduced molecular expression of K+ channel proteins in vascular smooth muscle from rats made<br>hypertensive with Nω-nitro-l-arginine. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 289, H1277-H1283.             | 1.5 | 31        |
| 57 | Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary<br>endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2005,<br>289, H48-H56.                       | 1.5 | 162       |
| 58 | C-reactive protein does not relax vascular smooth muscle: effects mediated by sodium azide in<br>commercially available preparations. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 288, H1786-H1795.              | 1.5 | 51        |
| 59 | Leptin resistance extends to the coronary vasculature in prediabetic dogs and provides a protective<br>adaptation against endothelial dysfunction. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 289, H1038-H1046. | 1.5 | 57        |
| 60 | Reduced functional expression of K+ channels in vascular smooth muscle cells from rats made<br>hypertensive with Nï‰-nitro-l-arginine. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 289, H1284-H1290.             | 1.5 | 28        |
| 61 | Phosphatidylinositol 3-kinase inhibitors reveal a unique mechanism of enhancing insulin secretion in 832/13 rat insulinoma cells. Biochemical and Biophysical Research Communications, 2004, 324, 1018-1023.                                     | 1.0 | 21        |
| 62 | Ethylbromide Tamoxifen, a Membrane-Impermeant Antiestrogen, Activates Smooth Muscle<br>Calcium-Activated Large-Conductance Potassium Channels from the Extracellular Side. Molecular<br>Pharmacology, 2002, 61, 1105-1113.                       | 1.0 | 34        |
| 63 | Separation of two Cl <sup>–</sup> Currents in Cultured Human and Murine Mesangial Cells:<br>Biophysical and Pharmacological Characteristics of I <sub>Cl.vol</sub> and I <sub>Cl.Ca</sub> .<br>Journal of Vascular Research, 2002, 39, 426-436.  | 0.6 | 6         |
| 64 | The pure anti-oestrogen ICI 182,780 (Faslodexâ,,¢) activates large conductance Ca2+ -activated K+<br>channels in smooth muscle. British Journal of Pharmacology, 2002, 136, 961-964.                                                             | 2.7 | 22        |
| 65 | (Xeno)estrogen Sensitivity of Smooth Muscle BK Channels Conferred by the Regulatory β1 Subunit.<br>Journal of Biological Chemistry, 2001, 276, 44835-44840.                                                                                      | 1.6 | 81        |
| 66 | Tamoxifen Activates Smooth Muscle BK Channels through the Regulatory Î <sup>2</sup> 1 Subunit. Journal of Biological Chemistry, 2001, 276, 34594-34599.                                                                                          | 1.6 | 119       |
| 67 | Effects of anion channel antagonists in canine colonic myocytes: comparative pharmacology of Clâ^' ,<br>Ca2+ and K+ currents. British Journal of Pharmacology, 1999, 127, 1819-1831.                                                             | 2.7 | 60        |
| 68 | Functional and molecular identification of a novel chloride conductance in canine colonic smooth<br>muscle. American Journal of Physiology - Cell Physiology, 1998, 275, C940-C950.                                                              | 2.1 | 54        |