Angela Boari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872030/publications.pdf

Version: 2024-02-01

		516561	501076
35	837	16	28
papers	citations	h-index	g-index
36	36	36	887
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Terpestacin, a toxin produced by <i>Phoma exigua</i> var. <i>heteromorpha</i> , the causal agent of a severe foliar disease of oleander (<i>Nerium oleander</i> L.). Natural Product Research, 2022, 36, 1253-1259.	1.0	4
2	Augmented phytotoxic effect of nanoencapsulated ophiobolin A. Natural Product Research, 2022, 36, 1143-1150.	1.0	3
3	Biodegradable polymers as carriers for tuning the release and improve the herbicidal effectiveness of Dittrichia viscosa plant organic extracts. Pest Management Science, 2021, 77, 646-658.	1.7	8
4	Evaluation of Dittrichia viscosa (L.) Greuter Dried Biomass for Weed Management. Plants, 2021, 10, 147.	1.6	7
5	Arabidopsis Defense against the Pathogenic Fungus Drechslera gigantea Is Dependent on the Integrity of the Unfolded Protein Response. Biomolecules, 2021, 11, 240.	1.8	7
6	Secondary metabolites produced by <i>Colletotrichum lupini</i> , the causal agent of anthachnose of lupin (<i>Lupinus</i> spp.). Mycologia, 2020, 112, 533-542.	0.8	11
7	Bioefficacy of compounds from Dittrichia viscosa (Asteraceae) as protectant of chickpea seeds against the cowpea seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae). Journal of Plant Diseases and Protection, 2019, 126, 437-446.	1.6	7
8	Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination. Molecules, 2019, 24, 3479.	1.7	7
9	Strigolactones and Parasitic Plants. , 2019, , 89-120.		12
10	Encapsulation of inuloxin A, a plant germacrane sesquiterpene with potential herbicidal activity, in \hat{l}^2 -cyclodextrins. Organic and Biomolecular Chemistry, 2019, 17, 2508-2515.	1.5	25
11	Lathyroxins A and B, Phytotoxic Monosubstituted Phenols Isolated from <i>Ascochyta lentis</i> var. <i>Iathyri</i> , a Fungal Pathogen of Grass Pea (<i>Lathyrus sativus</i>). Journal of Natural Products, 2018, 81, 1093-1097.	1.5	14
12	Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates. Natural Product Research, 2018, 32, 1611-1615.	1.0	5
13	On the metabolites produced by <i>Colletotrichum gloeosporioides</i> a fungus proposed for the <i>Ambrosia artemisiifolia</i> biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A. Natural Product Research, 2018, 32, 1537-1547.	1.0	13
14	Lentiquinones A, B, and C, Phytotoxic Anthraquinone Derivatives Isolated from <i>Ascochyta lentis</i> , a Pathogen of Lentil. Journal of Natural Products, 2018, 81, 2700-2709.	1.5	20
15	Fungal Phytotoxins in Sustainable Weed Management. Current Medicinal Chemistry, 2018, 25, 268-286.	1.2	14
16	Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran, Isolated from <i>Colletotrichum higginsianum</i> with Potential Herbicidal Activity. Journal of Agricultural and Food Chemistry, 2017, 65, 1124-1130.	2.4	39
17	Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyra n -2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron, 2017, 73, 6644-6650.	1.0	14
18	Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover. Frontiers in Plant Science, 2017, 8, 842.	1.7	22

#	Article	IF	CITATIONS
19	Parasitic weed management by using strigolactoneâ€degrading fungi. Pest Management Science, 2016, 72, 2043-2047.	1.7	20
20	Higginsianins A and B, Two Diterpenoid \hat{l}_{\pm} -Pyrones Produced by <i>Colletotrichum higginsianum</i> with <i>in Vitro</i> Cytostatic Activity. Journal of Natural Products, 2016, 79, 116-125.	1.5	38
21	Structure and Absolute Configuration of Kongiidiazadione, a New Phytotoxic 3â€Substitutedâ€5â€Diazenylcyclopentendione Produced by ⟨i⟩Diaporthe Kongii⟨/i⟩. Chirality, 2015, 27, 557-562.	1.3	3
22	Gulypyrones A and B and Phomentrioloxins B and C Produced by <i>Diaporthe gulyae</i> , a Potential Mycoherbicide for Saffron Thistle (<i>Carthamus lanatus</i>). Journal of Natural Products, 2015, 78, 623-629.	1.5	65
23	Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with inÂvitro growth inhibitory activity inÂhuman cancer cell lines. Tetrahedron, 2013, 69, 7466-7470.	1.0	34
24	Phomentrioloxin, a Fungal Phytotoxin with Potential Herbicidal Activity, and its Derivatives: A Structure–Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2013, 61, 131001083331004.	2.4	12
25	Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: Potential for broomrapes and field dodder management. Phytochemistry, 2013, 86, 112-120.	1.4	80
26	Ecotoxicological characterisation of a mycoherbicide mixture isolated from the fungus <i>Ascochyta caulina</i> . Pest Management Science, 2013, 69, 850-856.	1.7	14
27	Large-Scale Production and Purification of Ascochyta caulina Phytotoxins and a New HPLC Method for their Analysis. Chromatographia, 2011, 74, 633-638.	0.7	6
28	Natural metabolites for parasitic weed management. Pest Management Science, 2009, 65, 566-571.	1.7	63
29	â€~Microbigation': delivery of biological control agents through drip irrigation systems. Irrigation Science, 2008, 26, 101-107.	1.3	16
30	Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (Broomrape): Potential application for management of parasitic weeds. Biological Control, 2006, 36, 258-265.	1.4	55
31	Natural Compounds for Novel Strategies of Parasitic Plant Management. ACS Symposium Series, 2006, , 76-87.	0.5	1
32	Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: A structure–activity relationship study. Phytochemistry, 2006, 67, 19-26.	1.4	39
33	Metabolites Inhibiting Germination of Orobanche ramosa Seeds Produced by Myrothecium verrucaria and Fusarium compactum. Journal of Agricultural and Food Chemistry, 2005, 53, 1598-1603.	2.4	49
34	Toxicity profiles of potential biocontrol agents of Orobanche ramosa. Weed Science, 2004, 52, 326-332.	0.8	28
35	Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche) Tj ETQq $1\ 1$	0.784314 1.4	rgBT/Overloc

3