Eun-Ha Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7871720/publications.pdf Version: 2024-02-01

FUN-HA KIM

#	Article	IF	CITATIONS
1	Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host and Microbe, 2020, 27, 704-709.e2.	11.0	815
2	A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications, 2021, 12, 288.	12.8	224
3	Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clinical Microbiology and Infection, 2020, 26, 1520-1524.	6.0	180
4	Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infectious Diseases, 2019, 19, 676.	2.9	144
5	Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerging Microbes and Infections, 2014, 3, 1-13.	6.5	106
6	Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nature Microbiology, 2019, 4, 438-446.	13.3	66
7	Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight, 2020, 5, .	5.0	58
8	Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. Journal of Virology, 2015, 89, 287-299.	3.4	54
9	Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes and Infections, 2021, 10, 152-160.	6.5	54
10	Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016. Eurosurveillance, 2017, 22, .	7.0	44
11	Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets. Nature Communications, 2021, 12, 4567.	12.8	43
12	Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4 ⁺ T Cell Responses. Journal of Virology, 2022, 96, jvi0187321.	3.4	38
13	Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	32
14	Emergence of Mammalian Species-Infectious and -Pathogenic Avian Influenza H6N5 Virus with No Evidence of Adaptation. Journal of Virology, 2011, 85, 13271-13277.	3.4	31
15	Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 2022, 13, 21.	12.8	31
16	Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity. Journal of Microbiology, 2020, 58, 886-891.	2.8	28
17	Molecular Signatures of Inflammatory Profile and B-Cell Function in Patients with Severe Fever with Thrombocytopenia Syndrome. MBio, 2021, 12, .	4.1	25
18	Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infection, Genetics and Evolution, 2017, 53, 56-67.	2.3	23

Ευν-ΗΑ ΚιΜ

#	Article	IF	CITATIONS
19	Prokaryote-expressed M2e protein improves H9N2 influenza vaccine efficacy and protection against lethal influenza a virus in mice. Virology Journal, 2013, 10, 104.	3.4	21
20	Seroprevalence and genetic characterization of severe fever with thrombocytopenia syndrome virus in domestic goats in South Korea. Ticks and Tick-borne Diseases, 2018, 9, 1202-1206.	2.7	21
21	Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. Journal of General Virology, 2013, 94, 1230-1235.	2.9	20
22	Mouse adaptation of influenza B virus increases replication in the upper respiratory tract and results in droplet transmissibility in ferrets. Scientific Reports, 2015, 5, 15940.	3.3	20
23	Pathogenicity and genetic characterisation of a novel reassortant, highly pathogenic avian influenza (HPAI) H5N6 virus isolated in Korea, 2017. Eurosurveillance, 2018, 23, .	7.0	19
24	Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy. Journal of Virology, 2017, 91, .	3.4	18
25	Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients, 2019, 11, 1879.	4.1	18
26	Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology, 2016, 498, 36-43.	2.4	16
27	Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models. Journal of General Virology, 2014, 95, 793-798.	2.9	15
28	Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness. Journal of Microbiology and Biotechnology, 2018, 28, 997-1006.	2.1	15
29	Comparison of the virulence and transmissibility of canine H3N2 influenza viruses and characterization of their canine adaptation factors. Emerging Microbes and Infections, 2018, 7, 1-14.	6.5	14
30	Shedding and Transmission Modes of Severe Fever With Thrombocytopenia Syndrome Phlebovirus in a Ferret Model. Open Forum Infectious Diseases, 2019, 6, .	0.9	14
31	Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models. Virulence, 2018, 9, 133-148.	4.4	13
32	Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. Infection, Genetics and Evolution, 2015, 34, 378-393.	2.3	11
33	Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015. Archives of Virology, 2016, 161, 2749-2764.	2.1	11
34	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	2.9	11
35	Genetic diversity and pathogenic potential of low pathogenic H7 avian influenza viruses isolated from wild migratory birds in Korea. Infection, Genetics and Evolution, 2016, 45, 268-284.	2.3	10
36	Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. Journal of Virology, 2017, 91, .	3.4	10

Ευν-ΗΑ ΚιΜ

#	Article	IF	CITATIONS
37	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	4.1	10
38	Immunomodulaton and attenuation of lethal influenza A virus infection by oral administration with KIOM-C. Antiviral Research, 2013, 98, 386-393.	4.1	9
39	Injectable and Pathogenâ€Mimicking Hydrogels for Enhanced Protective Immunity against Emerging and Highly Pathogenic Influenza Virus. Small, 2016, 12, 6279-6288.	10.0	8
40	Assessment of mOMV adjuvant efficacy in the pathogenic H1N1 influenza virus vaccine. Clinical and Experimental Vaccine Research, 2014, 3, 194.	2.2	7
41	Preclinical evaluation of the efficacy of an H5N8 vaccine candidate (IDCDC-RG43A) in mouse and ferret models for pandemic preparedness. Vaccine, 2019, 37, 484-493.	3.8	7
42	Pathogenic assessment of avian influenza viruses in migratory birds. Emerging Microbes and Infections, 2021, 10, 565-577.	6.5	7
43	Antiviral effects of human placenta hydrolysate (Laennec®) against SARS-CoV-2 in vitro and in the ferret model. Journal of Microbiology, 2021, 59, 1056-1062.	2.8	7
44	Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses. Journal of Virology, 2016, 90, 616-623.	3.4	4
45	Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Phlebovirus in Domesticated Deer in South Korea. Virologica Sinica, 2019, 34, 501-507.	3.0	4
46	Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Research, 2014, 179, 64-72.	2.2	3
47	Evaluation of two different enzyme-linked immunosorbent assay for severe fever with thrombocytopenia syndrome virus diagnosis. Clinical and Experimental Vaccine Research, 2018, 7, 82.	2.2	3
48	Adjuvant efficacy of mOMV against avian influenza virus infection in mice. Journal of Microbiology, 2013, 51, 682-688.	2.8	2
49	Differences in seroprevalence between epicenter and non-epicenter areas of the COVID-19 outbreak in South Korea. Journal of Microbiology, 2021, 59, 530-533.	2.8	2
50	Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence, 2022, 13, 990-1004.	4.4	1