
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7871656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant and Cell Physiology, 2022, 63, 120-134.	1.5	9
2	Modification of tomato breeding traits and plant hormone signaling by Target-AID, the genome-editing system inducing efficient nucleotide substitution. Horticulture Research, 2022, 9, .	2.9	11
3	Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress. International Journal of Molecular Sciences, 2022, 23, 1681.	1.8	11
4	Letter to the Editor: The World's First CRISPR Tomato Launched to a Japanese Market: The Social-Economic Impact of its Implementation on Crop Genome Editing. Plant and Cell Physiology, 2022, 63, 731-733.	1.5	15
5	Effect of fruit maturation on N-glycosylation of plant-derived native and recombinant miraculin. Plant Physiology and Biochemistry, 2022, 178, 70-79.	2.8	1
6	Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells, 2022, 11, 1420.	1.8	3
7	The conserved brassinosteroid-related transcription factor BIM1a negatively regulates fruit growth in tomato. Journal of Experimental Botany, 2021, 72, 1181-1197.	2.4	8
8	Overproduction of ascorbic acid impairs pollen fertility in tomato. Journal of Experimental Botany, 2021, 72, 3091-3107.	2.4	30
9	The accumulation of recombinant miraculin is independent of fruit size in tomato. Plant Biotechnology, 2021, 38, 161-165.	0.5	2
10	Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. Frontiers in Plant Science, 2021, 12, 786688.	1.7	19
11	The inhibition of SIIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal of Plant Physiology, 2020, 252, 153238.	1.6	14
12	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	3.3	34
13	Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Tomato as an Example. Frontiers in Plant Science, 2020, 11, 577980.	1.7	34
14	Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Communications Biology, 2020, 3, 432.	2.0	29
15	A tomato heat-tolerant mutant shows improved pollen fertility and fruit-setting under long-term ambient high temperature. Environmental and Experimental Botany, 2020, 178, 104150.	2.0	21
16	Genome editing in <i>PDS</i> genes of tomatoes by non-selection method and of <i>Nicotiana benthamiana</i> by one single guide RNA to edit two orthologs. Plant Biotechnology, 2020, 37, 213-221.	0.5	10
17	Data on the yield and quality of organically hybrids of tropical tomato fruits at two stages of fruit maturation. Data in Brief, 2019, 25, 104031.	0.5	4
18	Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science, 2019, 10, 1204.	1.7	25

#	Article	IF	CITATIONS
19	Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes. Journal of Integrative Agriculture, 2019, 18, 1170-1176.	1.7	5
20	Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. Plant Cell, 2019, 31, 1043-1062.	3.1	55
21	Multiplex exome sequencing reveals genome-wide frequency and distribution of mutations in the †Micro-Tom' Targeting Induced Local Lesions in Genomes (TILLING) mutant library. Plant Biotechnology, 2019, 36, 223-231.	0.5	8
22	Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knockdown by novel tissue-specific promoters. Scientific Reports, 2019, 9, 18871.	1.6	8
23	Targeted Base Editing with CRISPR-Deaminase in Tomato. Methods in Molecular Biology, 2019, 1917, 297-307.	0.4	9
24	Evidence of the functional role of the ethylene receptor genes SIETR4 and SIETR5 in ethylene signal transduction in tomato. Molecular Genetics and Genomics, 2019, 294, 301-313.	1.0	15
25	Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 2018, 131, 37-46.	2.8	25
26	Utilization of a Genome-Edited Tomato (<i>Solanum lycopersicum</i>) with High Gamma Aminobutyric Acid Content in Hybrid Breeding. Journal of Agricultural and Food Chemistry, 2018, 66, 963-971.	2.4	18
27	Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.). Plant and Cell Physiology, 2018, 59, e4-e4.	1.5	36
28	The role of ethylene in the regulation of ovary senescence and fruit set in tomato (<i>Solanum) Tj ETQq0 0 0 rgB</i>	T /Overloc 1.2	:k 10 Tf 50 38
29	Comparison of the <i>N</i> -glycosylation on recombinant miraculin expressed in tomato plants with native miraculin. Plant Biotechnology, 2018, 35, 375-379.	0.5	4
30	Evaluation of internal control genes for quantitative realtime PCR analyses for studying fruit development of dwarf tomato cultivar â€~Micro-Tom'. Plant Biotechnology, 2018, 35, 225-235.	0.5	13
31	An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Scientific Reports, 2018, 8, 8088.	1.6	81
32	Development of a stable <i>Agrobacterium</i> -mediated transformation protocol for <i>Sorghum bicolor</i> Tx430. Plant Biotechnology, 2018, 35, 181-185.	0.5	4
33	Identification and functional study of a mild allele of SIDELLA gene conferring the potential for improved yield in tomato. Scientific Reports, 2018, 8, 12043.	1.6	37
34	An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants. Scientific Reports, 2017, 7, 42649.	1.6	29
35	Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 441-443.	9.4	632
36	Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 2017, 7, 7057.	1.6	228

#	Article	IF	CITATIONS
37	Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper Î ³ -aminobutyric acid (GABA) accumulation in tomato fruit. Plant Cell Reports, 2017, 36, 103-116.	2.8	33
38	Fruit Ripening in Melon. Plant Genetics and Genomics: Crops and Models, 2016, , 345-375.	0.3	4
39	Favorable effects of the weak ethylene receptor mutation Sletr1-2 on postharvest fruit quality changes in tomatoes. Postharvest Biology and Technology, 2016, 120, 1-9.	2.9	10
40	TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. Plant and Cell Physiology, 2016, 57, e11-e11.	1.5	49
41	Ethylene suppresses tomato (<i>Solanum lycopersicum</i>) fruit set through modification of gibberellin metabolism. Plant Journal, 2015, 83, 237-251.	2.8	128
42	Tomato Glutamate Decarboxylase GenesSlGAD2andSlGAD3Play Key Roles in Regulating Î ³ -Aminobutyric Acid Levels in Tomato (Solanum lycopersicum). Plant and Cell Physiology, 2015, 56, 1533-1545.	1.5	40
43	Potential Use of a Weak Ethylene Receptor Mutant, <i>Sletr1-2</i> , as Breeding Material To Extend Fruit Shelf Life of Tomato. Journal of Agricultural and Food Chemistry, 2015, 63, 7995-8007.	2.4	31
44	Regulatory change in cell division activity and genetic mapping of a tomato (Solanum lycopersicum L.) elongated-fruit mutant. Plant Biotechnology, 2014, 31, 149-158.	0.5	6
45	Metabolic engineering of flavonoids with prenyltransferase and chalcone isomerase genes in tomato fruits. Plant Biotechnology, 2014, 31, 567-571.	0.5	2
46	Plantââ,¬â€œAgrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Frontiers in Plant Science, 2014, 5, 681.	1.7	29
47	An E8 promoter–HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin. Plant Cell Reports, 2013, 32, 529-536.	2.8	20
48	Suppression of Î ³ -Aminobutyric Acid (GABA) Transaminases Induces Prominent GABA Accumulation, Dwarfism and Infertility in the Tomato (Solanum lycopersicum L.). Plant and Cell Physiology, 2013, 54, 793-807.	1.5	53
49	<i>Arabidopsis</i> WIND1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signaling and Behavior, 2013, 8, e27432.	1.2	25
50	Comparative analysis of common genes involved in early fruit development in tomato and grape. Plant Biotechnology, 2013, 30, 295-300.	0.5	4
51	Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnology, 2013, 30, 309-314.	0.5	32
52	Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnology, 2013, 30, 225-231.	0.5	40
53	SIICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum. Plant Biotechnology, 2012, 29, 253-260.	0.5	65
54	Overexpression of the tomato glutamate receptor-like genes SIGLR1.1 and SIGLR3.5 hinders Ca2+ utilization and promotes hypersensitivity to Na+ and K+ stresses. Plant Biotechnology, 2012, 29, .	0.5	3

#	Article	IF	CITATIONS
55	From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants. Plant Cell Reports, 2012, 31, 513-525.	2.8	32
56	Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Molecular Breeding, 2012, 29, 285-295.	1.0	21
57	The HSP Terminator of Arabidopsis thaliana Induces a High Level of Miraculin Accumulation in Transgenic Tomatoes. Journal of Agricultural and Food Chemistry, 2011, 59, 9942-9949.	2.4	33
58	Prolonged exposure to atmospheric nitrogen dioxide increases fruit yield of tomato plants. Plant Biotechnology, 2011, 28, 485-487.	0.5	15
59	Cultivation under salt stress increases the concentration of recombinant miraculin in transgenic tomato fruit, resulting in an increase in purification efficiency. Plant Biotechnology, 2011, 28, 387-392.	0.5	6
60	Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Research, 2011, 20, 1285-1292.	1.3	19
61	Tomato TILLING Technology: Development of a Reverse Genetics Tool for the Efficient Isolation of Mutants from Micro-Tom Mutant Libraries. Plant and Cell Physiology, 2011, 52, 1994-2005.	1.5	178
62	TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections. Plant and Cell Physiology, 2011, 52, 283-296.	1.5	192
63	Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotechnology, 2010, 27, 333-338.	0.5	13
64	Metabolic Alterations in Organic Acids and \hat{I}^3 -Aminobutyric Acid in Developing Tomato (Solanum) Tj ETQq0 0 () rgBT /Ove	rlock 10 Tf 50
65	NBRP, National Bioresource Project of Japan and plant bioresource management. Breeding Science, 2010, 60, 461-468.	0.9	7
66	Antihypertensive Effect of a γ-Aminobutyric Acid Rich Tomato Cultivar †DG03-9' in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2010, 58, 615-619.	2.4	85
67	Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells. Journal of Plant Physiology, 2010, 167, 209-215.	1.6	25
68	Spatial and Developmental Profiling of Miraculin Accumulation in Transgenic Tomato Fruits Expressing the Miraculin Gene Constitutively. Journal of Agricultural and Food Chemistry, 2010, 58, 282-286.	2.4	29
69	Possible role of EARLY FLOWERING 3 (ELF3) in clockâ€dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in <i> Arabidopsis thaliana</i> . New Phytologist, 2009, 182, 838-850.	3.5	48
70	Isolation of suppressors of late flowering and abnormal flower shape phenotypes caused by overexpression of the SHORT VEGETATIVE PHASE gene in Arabidopsis thaliana. Plant Biotechnology, 2009, 26, 217-224.	0.5	6
71	Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 2008, 49, 1378-1389.	1.5	165
72	Screening for Î ³ -aminobutyric Acid (GABA)-rich Tomato Varieties. Japanese Society for Horticultural Science, 2008, 77, 242-250.	0.8	60

#	Article	IF	CITATIONS
73	Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnology, 2008, 25, 329-333.	0.5	41
74	Analysis of Molecular Diversity of Bacterial Chitinase Genes in the Maize Rhizosphere Using Culture-Independent Methods. Microbes and Environments, 2007, 22, 71-77.	0.7	19
75	Microbial Diversity in Milled Rice as Revealed by Riosomal Intergenic Spacer Analysis. Microbes and Environments, 2007, 22, 165-174.	0.7	19
76	Microbial Community Analysis of the Phytosphere Using Culture-Independent Methodologies. Microbes and Environments, 2007, 22, 93-105.	0.7	52
77	Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology, 2007, 24, 33-38.	0.5	56
78	Molecular and genetic characterization of transgenic tomato expressing 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Biotechnology, 2007, 24, 107-115.	0.5	10
79	Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnology Journal, 2007, 5, 768-777.	4.1	79
80	Fertile somatic hybrids between Solanum integrifolium and S. sanitwongsei (syn. S. kurzii) as candidates for bacterial wilt-resistant rootstock of eggplant. Plant Biotechnology, 2007, 24, 179-184.	0.5	14
81	Tomato genomics by JSOL. Plant Biotechnology, 2007, 24, 3-3.	0.5	1
82	Efficient selection of a high-yield line by using somaclonal variation in Japanese butterbur (<i>Petasites japonicus</i>). Plant Biotechnology, 2007, 24, 289-293.	0.5	4
83	A Highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. Plant and Cell Physiology, 2006, 47, 426-431.	1.5	357
84	Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Letters, 2006, 580, 620-626.	1.3	101
85	Discrimination of the Commercial Seeds of Forage Crops using Ribosomal Intergenic Spacer Analysis. Breeding Science, 2006, 56, 185-188.	0.9	1
86	Community Analysis of Seed-Associated Microbes in Forage Crops using Culture-Independent Methods. Microbes and Environments, 2006, 21, 112-121.	0.7	22
87	Microbial Community Analysis in the Rhizosphere of a Transgenic Tomato that Overexpresses 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Microbes and Environments, 2006, 21, 261-271.	0.7	16
88	Modification of Sugar Composition in Strawberry Fruit by Antisense Suppression of an ADP-glucose Pyrophosphorylase. Molecular Breeding, 2006, 17, 269-279.	1.0	44
89	Subcellular Localization and Membrane Topology of the Melon Ethylene Receptor CmERS1. Plant Physiology, 2006, 141, 587-597.	2.3	76
90	Effect of a special screened greenhouse covered by fine mesh on maize outcrossing. Plant Biotechnology, 2006, 23, 309-316.	0.5	3

#	Article	IF	CITATIONS
91	Efficacy of a special screened greenhouse covered by duplex fine mesh in reducing maize outcrossing. Plant Biotechnology, 2006, 23, 387-394.	0.5	2
92	Efficient plant regeneration from protoplasts of eggplant rootstock cultivar and its wild relatives. Plant Biotechnology, 2006, 23, 525-529.	0.5	3
93	Detection of ethylene receptor protein Cmâ€ERS1 during fruit development in melon (Cucumis melo L.). Journal of Experimental Botany, 2002, 53, 415-422.	2.4	38
94	Stage- and Tissue-Specific Expression of Ethylene Receptor Homolog Genes during Fruit Development in Muskmelon1. Plant Physiology, 1999, 120, 321-330.	2.3	133