Gang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7871260/publications.pdf

Version: 2024-02-01

434195 567281 1,372 30 15 31 citations h-index g-index papers 31 31 31 2763 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature, 2016, 537, 412-416.	27.8	514
2	Alternative Polyadenylation: Methods, Findings, and Impacts. Genomics, Proteomics and Bioinformatics, 2017, 15, 287-300.	6.9	100
3	Global intron retention mediated gene regulation during CD4 ⁺ T cell activation. Nucleic Acids Research, 2016, 44, 6817-6829.	14.5	96
4	An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Scientific Reports, 2017, 7, 2320.	3.3	91
5	3′ UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Research, 2018, 28, 285-294.	5.5	90
6	An intriguing RNA species—perspectives of circularized RNA. Protein and Cell, 2015, 6, 871-880.	11.0	88
7	Position-specific intron retention is mediated by the histone methyltransferase SDG725. BMC Biology, 2018, 16, 44.	3.8	41
8	Endogenous Retrovirus-Derived Long Noncoding RNA Enhances Innate Immune Responses via Derepressing RELA Expression. MBio, 2019, 10, .	4.1	39
9	Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging, 2019, 11, 1356-1388.	3.1	33
10	Alternative splicing in aging and age-related diseases. Translational Medicine of Aging, 2017, 1, 32-40.	1.3	28
11	Prevalent intron retention fineâ€ŧunes gene expression and contributes to cellular senescence. Aging Cell, 2020, 19, e13276.	6.7	25
12	Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell, 2020, 19, e13212.	6.7	24
13	Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration. Nucleic Acids Research, 2021, 49, e54-e54.	14.5	20
14	Cancer-associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA-seq data. Genome Research, 2021, 31, 2095-2106.	5.5	20
15	MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice. Scientific Reports, 2015, 5, 12049.	3.3	19
16	HNRNPA1-mediated $3\hat{a} \in 2$ UTR length changes of <i>HN1</i> contributes to cancer- and senescence-associated phenotypes. Aging, 2019, 11, 4407-4437.	3.1	19
17	Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Frontiers in Genetics, 2020, 11, 867.	2.3	16
18	Comprehensive characterization of somatic variants associated with intronic polyadenylation in human cancers. Nucleic Acids Research, 2021, 49, 10369-10381.	14.5	14

#	Article	IF	CITATIONS
19	Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sciences, 2019, 229, 225-232.	4.3	12
20	Smyd3-PARP16 axis accelerates unfolded protein response and vascular aging. Aging, 2020, 12, 21423-21445.	3.1	12
21	Rare mutations in apoptosis related genes APAF1, CASP9, and CASP3 contribute to human neural tube defects. Cell Death and Disease, 2018, 9, 43.	6.3	11
22	SMYD3–PARP16 axis accelerates unfolded protein response and mediates neointima formation. Acta Pharmaceutica Sinica B, 2021, 11, 1261-1273.	12.0	11
23	Systematic evaluation of the effect of polyadenylation signal variants on the expression of disease-associated genes. Genome Research, 2021, 31, 890-899.	5.5	8
24	Lung cancer cells expressing a shortened <i>CDK16</i> 3′UTR escape senescence through impaired miRâ€485â€5p targeting. Molecular Oncology, 2022, 16, 1347-1364.	4.6	8
25	H3K4 Methyltransferase Smyd3 Mediates Vascular Smooth Muscle Cell Proliferation, Migration, and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1901-1914.	2.4	7
26	Tempo-spatial alternative polyadenylation analysis reveals that 3′ UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochemical and Biophysical Research Communications, 2020, 523, 1046-1052.	2.1	6
27	An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nature Communications, 2022, 13, 1232.	12.8	6
28	Global downregulation of pigmentation‑associated genes in human premature hair graying. Experimental and Therapeutic Medicine, 2019, 18, 1155-1163.	1.8	5
29	Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein and Cell, 2018, 9, 540-552.	11.0	3
30	Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. Biochemical and Biophysical Research Communications, 2018, 499, 809-814.	2.1	2