Cynthia A Randles

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7871177/cynthia-a-randles-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,468 17 22 22 h-index g-index citations papers 4.88 5.6 22 5,741 avg, IF L-index ext. citations ext. papers

#	Paper Paper	IF	Citations
22	Climate and air pollution implications of potential energy infrastructure and policy measures in India. <i>Energy and Climate Change</i> , 2022 , 3, 100067	1.2	O
21	Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 5821-5846	6.8	12
20	Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090864	4.9	14
19	A global modelTheasurement evaluation of particle light scattering coefficients at elevated relative humidity. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10231-10258	6.8	7
18	Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5655-5668	4	22
17	Detecting high-emitting methane sources in oil/gas fields using satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 16885-16896	6.8	25
16	Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8265-8278	6.8	17
15	The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). <i>Journal of Climate</i> , 2017 , Volume 30, 5419-5454	4.4	2815
14	The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. <i>Journal of Climate</i> , 2017 , 30, 6823-6850	4.4	451
13	Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States. <i>Environmental Science & Environmental Scien</i>	10.3	20
12	The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. <i>Journal of Climate</i> , 2017 , 30, 6851-6872	4.4	287
11	Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. <i>Atmospheric Environment</i> , 2016 , 125, 100-111	5.3	93
10	Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5743-5760	6.8	130
9	Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 753	3 -178 6	97
8	Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center. Bulletin of the American Meteorological Society, 2014, 95, ES203-ES207	6.1	
7	Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 149-169	4.4	33
6	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2347-2379	6.8	85

LIST OF PUBLICATIONS

5	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3245-3270	6.8	113
4	Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM. <i>Journal of Geophysical Research</i> , 2010 , 115,		36
3	Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9819-9831	6.8	31
2	Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. <i>Journal of Geophysical Research</i> , 2008 , 113,		88
1	Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	92