Andrew H Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870862/publications.pdf Version: 2024-02-01

	9786	12597
20,755	73	132
citations	h-index	g-index
324	324	21350
docs citations	times ranked	citing authors
	citations 324	20,755 73 citations h-index 324 324

#	Article	IF	CITATIONS
1	Metalloproteinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science, 2002, 115, 3719-3727.	2.0	1,029
2	Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine, 1999, 5, 1135-1142.	30.7	745
3	A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 2003, 9, 407-415.	30.7	616
4	IL-33 reduces the development of atherosclerosis. Journal of Experimental Medicine, 2008, 205, 339-346.	8.5	574
5	Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell, 2008, 132, 397-409.	28.9	573
6	Synergistic upregulation of metalloproteinaseâ€9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NFâ€₽̃B. FEBS Letters, 1998, 435, 29-34.	2.8	465
7	Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis Journal of Clinical Investigation, 1998, 101, 1478-1487.	8.2	416
8	Deregulation of microRNA-503 Contributes to Diabetes Mellitus–Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation, 2011, 123, 282-291.	1.6	374
9	Endothelial to Mesenchymal Transition inÂCardiovascular Disease. Journal of the American College of Cardiology, 2019, 73, 190-209.	2.8	357
10	Inhibition of transcription factor NF-κB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovascular Research, 2001, 50, 556-565.	3.8	325
11	Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension. PLoS Genetics, 2010, 6, e1001177.	3.5	312
12	Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension due to Chronic Hypoxia and Monocrotaline. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 716-723.	2.4	305
13	Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth muscle cells. Biochemical Journal, 1996, 315, 335-342.	3.7	282
14	Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British Journal of Cancer, 1999, 79, 1347-1355.	6.4	265
15	A Role for miR-145 in Pulmonary Arterial Hypertension. Circulation Research, 2012, 111, 290-300.	4.5	263
16	Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood, 2006, 108, 2554-2561.	1.4	256
17	MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 870-883.	4.5	246
18	New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nature Medicine, 1999, 5, 1264-1269.	30.7	232

#	Article	IF	CITATIONS
19	Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnology, 2001, 19, 838-842.	17.5	219
20	IncRNA/MicroRNA interactions in the vasculature. Clinical Pharmacology and Therapeutics, 2016, 99, 494-501.	4.7	205
21	Efficient and Selective AAV2-Mediated Gene Transfer Directed to Human Vascular Endothelial Cells. Molecular Therapy, 2001, 4, 174-181.	8.2	204
22	Inhibition of Late Vein Graft Neointima Formation in Human and Porcine Models by Adenovirus-Mediated Overexpression of Tissue Inhibitor of Metalloproteinase-3. Circulation, 2000, 101, 296-304.	1.6	203
23	Adenovirus-Mediated Gene Transfer of the Human TIMP-1 Gene Inhibits Smooth Muscle Cell Migration and Neointimal Formation in Human Saphenous Vein. Human Gene Therapy, 1998, 9, 867-877.	2.7	201
24	The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nature Communications, 2013, 4, 3000.	12.8	198
25	Lesional Overexpression of Matrix Metalloproteinase-9 Promotes Intraplaque Hemorrhage in Advanced Lesions But Not at Earlier Stages of Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 340-346.	2.4	196
26	Targeted Gene Delivery to Vascular Tissue In Vivo by Tropism-Modified Adeno-Associated Virus Vectors. Circulation, 2004, 109, 513-519.	1.6	184
27	Smooth Muscle Enriched Long Noncoding RNA (<i>SMILR</i>) Regulates Cell Proliferation. Circulation, 2016, 133, 2050-2065.	1.6	182
28	Nuclear Factor κB Activity Is Essential for Matrix Metalloproteinase-1 and -3 Upregulation in Rabbit Dermal Fibroblasts. Biochemical and Biophysical Research Communications, 1999, 264, 561-567.	2.1	169
29	Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation, 2021, 143, 865-868.	1.6	166
30	Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene, 2003, 22, 2121-2134.	5.9	162
31	MMPâ€2 and MMPâ€9 synergize in promoting choroidal neovascularization. FASEB Journal, 2003, 17, 2290-2292.	0.5	159
32	Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood, 2009, 114, 965-971.	1.4	158
33	The influence of adenovirus fiber structure and function on vector development for gene therapy. Molecular Therapy, 2005, 12, 384-393.	8.2	157
34	Loss or Inhibition of uPA or MMP-9 Attenuates LV Remodeling and Dysfunction after Acute Pressure Overload in Mice. American Journal of Pathology, 2005, 166, 15-25.	3.8	150
35	Selective Targeting of Gene Transfer to Vascular Endothelial Cells by Use of Peptides Isolated by Phage Display. Circulation, 2000, 102, 231-237.	1.6	149
36	Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Therapy, 2002, 9, 320-326.	4.5	149

#	Article	IF	CITATIONS
37	Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. European Heart Journal, 2019, 40, 2507-2520.	2.2	149
38	Derivation of Endothelial Cells From Human Embryonic Stem Cells by Directed Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1389-1397.	2.4	147
39	Gene transfer of tissue inhibitor of metalloproteinase-2 inhibits metalloproteinase activity and neointima formation in human saphenous veins. Gene Therapy, 1998, 5, 1552-1560.	4.5	144
40	Promoters and Control Elements: Designing Expression Cassettes for Gene Therapy. Current Gene Therapy, 2004, 4, 89-113.	2.0	142
41	Suppression of Atherosclerotic Plaque Progression and Instability by Tissue Inhibitor of Metalloproteinase-2. Circulation, 2006, 113, 2435-2444.	1.6	142
42	Cardiovascular Gene Therapy: Past, Present, and Future. Molecular Therapy, 2017, 25, 1095-1106.	8.2	141
43	Ablating Adenovirus Type 5 Fiber–CAR Binding and HI Loop Insertion of the SIGYPLP Peptide Generate an Endothelial Cell-Selective Adenovirus. Molecular Therapy, 2001, 4, 534-542.	8.2	134
44	A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells. Molecular Therapy, 2016, 24, 978-990.	8.2	133
45	MicroRNA-214 Antagonism Protects against Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2014, 25, 65-80.	6.1	132
46	Tissue Inhibitor of Metalloproteinase-3 Induces a Fas-associated Death Domain-dependent Type II Apoptotic Pathway. Journal of Biological Chemistry, 2002, 277, 13787-13795.	3.4	126
47	Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Molecular Therapy, 2006, 13, 683-693.	8.2	119
48	Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H461-H468.	3.2	115
49	Localization of the Death Domain of Tissue Inhibitor of Metalloproteinase-3 to the N Terminus. Journal of Biological Chemistry, 2000, 275, 41358-41363.	3.4	112
50	Heparan Sulfate Proteoglycan Binding Properties of Adeno-Associated Virus Retargeting Mutants and Consequences for Their In Vivo Tropism. Journal of Virology, 2006, 80, 7265-7269.	3.4	112
51	Catalytic Oligodeoxynucleotides Define a Key Regulatory Role for Early Growth Response Factor-1 in the Porcine Model of Coronary In-Stent Restenosis. Circulation Research, 2001, 89, 670-677.	4.5	105
52	Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors. Viruses, 2010, 2, 2290-2355.	3.3	104
53	Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Molecular Therapy, 2004, 10, 344-354.	8.2	101
54	Upregulation of Basement Membrane–Degrading Metalloproteinase Secretion After Balloon Injury of Pig Carotid Arteries. Circulation Research, 1996, 79, 1177-1187.	4.5	101

#	Article	IF	CITATIONS
55	Inhibition of Urokinase-Type Plasminogen Activator or Matrix Metalloproteinases Prevents Cardiac Injury and Dysfunction During Viral Myocarditis. Circulation, 2006, 114, 565-573.	1.6	100
56	miR-21 and miR-214 Are Consistently Modulated during Renal Injury in Rodent Models. American Journal of Pathology, 2011, 179, 661-672.	3.8	100
57	The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 2019, 125, 535-551.	4.5	100
58	MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 2012, 93, 594-604.	3.8	98
59	Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends in Molecular Medicine, 2003, 9, 351-359.	6.7	96
60	Development of Efficient Viral Vectors Selective for Vascular Smooth Muscle Cells. Molecular Therapy, 2004, 9, 198-208.	8.2	96
61	Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood, 2010, 116, 2656-2664.	1.4	96
62	The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. Molecular Therapy - Nucleic Acids, 2017, 8, 494-507.	5.1	96
63	Pluripotent stem cell differentiation into vascular cells: A novel technology with promises for vascular re(generation). , 2011, 129, 29-49.		95
64	Reducing In-Stent Restenosis. Journal of the American College of Cardiology, 2015, 65, 2314-2327.	2.8	95
65	Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Therapy, 2002, 9, 110-117.	4.5	92
66	Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells. Stem Cells, 2012, 30, 643-654.	3.2	92
67	Analysis of Cell-Specific Promoters for Viral Gene Therapy Targeted at the Vascular Endothelium. Hypertension, 2001, 38, 65-70.	2.7	90
68	Inhibition of Matrix Metalloproteinases by Lung TIMP-1 Gene Transfer or Doxycycline Aggravates Pulmonary Hypertension in Rats. Circulation Research, 2000, 87, 418-425.	4.5	88
69	Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs. Molecular Therapy, 2016, 24, 6-16.	8.2	85
70	Endothelial Apoptosis in Pulmonary Hypertension Is Controlled by a microRNA/Programmed Cell Death 4/Caspase-3 Axis. Hypertension, 2014, 64, 185-194.	2.7	84
71	Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Molecular and Cellular Neurosciences, 2003, 22, 98-106.	2.2	81
72	Wild-type p53 gene transfer inhibits neointima formation in human saphenous vein by modulation of smooth muscle cell migration and induction of apoptosis. Gene Therapy, 2001, 8, 668-676.	4.5	80

#	Article	IF	CITATIONS
73	Transcription Factor Egr-1 Is Essential for Maximal Matrix Metalloproteinase-9 Transcription by Tumor Necrosis Factor α. Molecular Cancer Research, 2010, 8, 507-519.	3.4	80
74	Brain protection using autologous bone marrow cell, metalloproteinase inhibitors, and metabolic treatment in cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3597-3602.	7.1	79
75	Tropism-Modified Adenoviral and Adeno-Associated Viral Vectors for Gene Therapy. Current Gene Therapy, 2002, 2, 273-293.	2.0	77
76	The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascular Pharmacology, 2019, 112, 24-30.	2.1	77
77	Local Gene Transfer of Tissue Inhibitor of Metalloproteinase-2 Influences Vein Graft Remodeling in a Mouse Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1275-1280.	2.4	76
78	Antitumor Activity and Bystander Effect of Adenovirally Delivered Tissue Inhibitor of Metalloproteinases-3. Molecular Therapy, 2002, 5, 705-715.	8.2	75
79	TGFβ, smooth muscle cells and coronary artery disease: a review. Cellular Signalling, 2019, 53, 90-101.	3.6	75
80	Membrane-type 1-Matrix Metalloproteinase Regulates Intracellular Adhesion Molecule-1 (ICAM-1)-mediated Monocyte Transmigration. Journal of Biological Chemistry, 2007, 282, 25010-25019.	3.4	73
81	Effect of Neutralizing Sera on Factor X-Mediated Adenovirus Serotype 5 Gene Transfer. Journal of Virology, 2009, 83, 479-483.	3.4	72
82	An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood, 2013, 121, 3768-3777.	1.4	72
83	Targeting of Adenovirus Serotype 5 (Ad5) and 5/47 Pseudotyped Vectors In Vivo: Fundamental Involvement of Coagulation Factors and Redundancy of CAR Binding by Ad5. Journal of Virology, 2007, 81, 9568-9571.	3.4	70
84	Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X. PLoS Pathogens, 2010, 6, e1001142.	4.7	70
85	Canonical Transforming Growth Factor-β Signaling Regulates Disintegrin Metalloprotease Expression in Experimental Renal Fibrosis via miR-29. American Journal of Pathology, 2013, 183, 1885-1896.	3.8	66
86	Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. Journal of Molecular and Cellular Cardiology, 2003, 35, 739-748.	1.9	65
87	Sustained Reduction of Vein Graft Neointima Formation by Ex Vivo TIMP-3 Gene Therapy. Circulation, 2011, 124, S135-42.	1.6	65
88	Influence of Coagulation Factor Zymogens on the Infectivity of Adenoviruses Pseudotyped with Fibers from Subgroup D. Journal of Virology, 2007, 81, 3627-3631.	3.4	62
89	The Influence of Blood on In Vivo Adenovirus Bio-distribution and Transduction. Molecular Therapy, 2007, 15, 1410-1416.	8.2	62
90	MicroRNAs in pulmonary arterial remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4479-4494.	5.4	61

#	Article	IF	CITATIONS
91	miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. European Heart Journal, 2013, 34, 1636-1643.	2.2	61
92	A Sex-Specific MicroRNA-96/5-Hydroxytryptamine 1B Axis Influences Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1432-1442.	5.6	61
93	Identification of Peptides That Target the Endothelial Cell–Specific LOX-1 Receptor. Hypertension, 2001, 37, 449-455.	2.7	59
94	Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. Journal of Bone and Mineral Research, 2020, 35, 357-367.	2.8	59
95	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	4.5	59
96	Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Molecular Therapy, 2005, 12, 321-327.	8.2	58
97	miRâ€34a ^{â^'/â^'} mice are susceptible to dietâ€induced obesity. Obesity, 2016, 24, 1741-1751.	3.0	57
98	Rat Amnion Type IV Collagen Composition and Metabolism: Implications for Membrane Breakdown1. Biology of Reproduction, 1999, 60, 176-182.	2.7	56
99	Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Therapy, 2005, 12, 1154-1157.	4.5	56
100	Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Therapy, 2005, 12, 1534-1538.	4.5	56
101	In Vitro and In Vivo Properties of Adenovirus Vectors with Increased Affinity to CD46. Journal of Virology, 2008, 82, 10567-10579.	3.4	56
102	Ad5:Ad48 Hexon Hypervariable Region Substitutions Lead to Toxicity and Increased Inflammatory Responses Following Intravenous Delivery. Molecular Therapy, 2012, 20, 2268-2281.	8.2	54
103	Adenovirus 5 Fibers Mutated at the Putative HSPG-binding Site Show Restricted Retargeting with Targeting Peptides in the HI Loop. Molecular Therapy, 2007, 15, 741-749.	8.2	53
104	Development of recombinant adenoviruses that drive high level expression of the human metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 and -2 genes: Characterization of their infection into rabbit smooth muscle cells and human MCF-7 adenocarcinoma cells. Matrix Biology, 1996, 15, 383-395.	3.6	52
105	Serotonin transporter, sex, and hypoxia: microarray analysis in the pulmonary arteries of mice identifies genes with relevance to human PAH. Physiological Genomics, 2011, 43, 417-437.	2.3	52
106	Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified TropismIn VitroandIn Vivo. Human Gene Therapy, 2004, 15, 1054-1064.	2.7	51
107	Collagenase-3 (MMP-13) Enhances Remodeling of Three-Dimensional Collagen and Promotes Survival of Human Skin Fibroblasts. Journal of Investigative Dermatology, 2007, 127, 49-59.	0.7	51
108	Expression of Tissue Inhibitor of Metalloproteinase-1, -2, and -3 During Neointima Formation in Organ Cultures of Human Saphenous Vein. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 255-265.	2.4	50

#	Article	IF	CITATIONS
109	Targeting Non-coding RNA in Vascular Biology and Disease. Frontiers in Physiology, 2018, 9, 1655.	2.8	50
110	Peptide-Retargeted Adenovirus Encoding a Tissue Inhibitor of Metalloproteinase-1 Decreases Restenosis after Intravascular Gene Transfer. Molecular Therapy, 2002, 6, 306-312.	8.2	48
111	Inhibition of Matrix Metalloproteinases by Lung TIMP-1 Gene Transfer Limits Monocrotaline-Induced Pulmonary Vascular Remodeling in Rats. Human Gene Therapy, 2003, 14, 861-869.	2.7	48
112	Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension. Molecular Therapy, 2012, 20, 1516-1528.	8.2	48
113	Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product. Molecular Therapy, 2018, 26, 1669-1684.	8.2	48
114	Paradoxical effects of tissue inhibitor of metalloproteinases 1 gene transfer in collagen-induced arthritis. Arthritis and Rheumatism, 2001, 44, 1444-1454.	6.7	47
115	In vitro andin vivo characterisation of endothelial cell selective adenoviral vectors. Journal of Gene Medicine, 2004, 6, 300-308.	2.8	47
116	<i>CARMN</i> Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circulation Research, 2021, 128, 1258-1275.	4.5	47
117	Designing gene delivery vectors for cardiovascular gene therapy. Progress in Biophysics and Molecular Biology, 2004, 84, 279-299.	2.9	46
118	Neuroprotective effect of adenoviral-mediated gene transfer of TIMP-1 and -2 in ischemic brain injury. Gene Therapy, 2007, 14, 621-625.	4.5	46
119	Manipulation of adenovirus interactions with host factors for gene therapy applications. Nanomedicine, 2012, 7, 271-288.	3.3	46
120	Novel Plaque Enriched Long Noncoding RNA in Atherosclerotic Macrophage Regulation (PELATON). Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 697-713.	2.4	46
121	Overexpression of p53 Increases Lumen Size and Blocks Neointima Formation in Porcine Interposition Vein Grafts. Molecular Therapy, 2004, 9, 689-698.	8.2	45
122	Vein graft failure: current clinical practice and potential for gene therapeutics. Gene Therapy, 2012, 19, 630-636.	4.5	45
123	Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 2519-2534.	3.8	45
124	Expression of collagenaseâ€3 (MMPâ€13) enhances invasion of human fibrosarcoma HTâ€1080 cells. International Journal of Cancer, 2002, 97, 283-289.	5.1	44
125	Stroma Formation and Angiogenesis by Overexpression of Growth Factors, Cytokines, and Proteolytic Enzymes in Human Skin Grafted to SCID Mice. Journal of Investigative Dermatology, 2003, 120, 683-692.	0.7	44
126	Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovascular Research, 2019, 115, 1692-1704.	3.8	43

#	Article	IF	CITATIONS
127	Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. European Heart Journal, 2020, 41, 1024-1036.	2.2	43
128	Differential alterations in the expression and activity of matrix metalloproteinases 2 and 9 after transient cerebral ischemia in mice. Neurobiology of Disease, 2004, 17, 188-197.	4.4	42
129	Manipulating Adenovirus Hexon Hypervariable Loops Dictates Immune Neutralisation and Coagulation Factor X-dependent Cell Interaction In Vitro and In Vivo. PLoS Pathogens, 2015, 11, e1004673.	4.7	42
130	Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Frontiers in Cell and Developmental Biology, 2019, 7, 228.	3.7	42
131	The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovascular Research, 2020, 116, 1981-1994.	3.8	42
132	In vitro susceptibility to the pro-apoptotic effects of TIMP-3 gene delivery translates to greater in vivo efficacy versus gene delivery for TIMPs-1 or -2. Lung Cancer, 2006, 53, 273-284.	2.0	41
133	Development of Renal-targeted Vectors Through Combined In Vivo Phage Display and Capsid Engineering of Adenoviral Fibers From Serotype 19p. Molecular Therapy, 2007, 15, 1647-1654.	8.2	41
134	Arteriolar Genesis and Angiogenesis Induced by Endothelial Nitric Oxide Synthase Overexpression Results in a Mature Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1462-1468.	2.4	41
135	Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors. Molecular Therapy, 2009, 17, 1683-1691.	8.2	41
136	Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus). Gene Therapy, 2012, 19, 109-113.	4.5	41
137	Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-1² signalling: implications for PAH vascular remodelling. Cell Communication and Signaling, 2019, 17, 143.	6.5	41
138	MIR503HG Loss Promotes Endothelial-to-Mesenchymal Transition in Vascular Disease. Circulation Research, 2021, 128, 1173-1190.	4.5	41
139	Onset of Experimental Severe Cardiac Fibrosis Is Mediated by Overexpression of Angiotensin-Converting Enzyme 2. Hypertension, 2009, 53, 694-700.	2.7	38
140	Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses. Journal of Controlled Release, 2012, 164, 394-402.	9.9	38
141	Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. Journal of Drug Targeting, 2005, 13, 39-51.	4.4	37
142	Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Therapy, 2008, 15, 443-451.	4.5	37
143	In Vivo Modulation of Nogo-B Attenuates Neointima Formation. Molecular Therapy, 2008, 16, 1798-1804.	8.2	37
144	Non-coding RNAs in vascular disease – from basic science to clinical applications: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1281-1286.	3.8	37

#	Article	IF	CITATIONS
145	Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. Journal of Clinical Investigation, 2021, 131, .	8.2	36
146	Combined Fiber Modifications Both to Target α _v β ₆ and Detarget the Coxsackievirus–Adenovirus Receptor Improve Virus Toxicity Profiles <i>In Vivo</i> but Fail to Improve Antitumoral Efficacy Relative to Adenovirus Serotype 5. Human Gene Therapy, 2012, 23, 960-979.	2.7	35
147	Luciferin Detection After Intranasal Vector Delivery Is Improved by Intranasal Rather Than Intraperitoneal Luciferin Administration. Human Gene Therapy, 2008, 19, 1050-1056.	2.7	34
148	Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Letters, 2003, 201, 165-173.	7.2	32
149	Multiphoton Microscopy for 3-Dimensional Imaging of Lymphocyte Recruitment Into Apolipoprotein-E–Deficient Mouse Carotid Artery. Circulation, 2007, 115, e326-8.	1.6	32
150	Functional characterization of a 13-bp deletion (c15221510del13) in the promoter of the von Willebrand factor gene in type 1 von Willebrand disease. Blood, 2010, 116, 3645-3652.	1.4	32
151	Lentivirus-mediated Reprogramming of Somatic Cells in the Absence of Transgenic Transcription Factors. Molecular Therapy, 2010, 18, 2139-2145.	8.2	32
152	A Cluster of Basic Amino Acids in the Factor X Serine Protease Mediates Surface Attachment of Adenovirus/FX Complexes. Journal of Virology, 2011, 85, 10914-10919.	3.4	32
153	Coronary Artery and Cardiac Disease in Patients With Type 2 Myocardial Infarction: A Prospective Cohort Study. Circulation, 2022, 145, 1188-1200.	1.6	32
154	Cell-selective viral gene delivery vectors for the vasculature. Experimental Physiology, 2005, 90, 27-31.	2.0	31
155	TIMPâ€3 promotes apoptosis in nonadherent small cell lung carcinoma cells lacking functional death receptor pathway. International Journal of Cancer, 2011, 128, 991-996.	5.1	31
156	In utero administration of Ad5 and AAV pseudotypes to the fetal brain leads to efficient, widespread and long-term gene expression. Gene Therapy, 2012, 19, 936-946.	4.5	31
157	Role of noncoding RNA in vascular remodelling. Current Opinion in Lipidology, 2016, 27, 439-448.	2.7	31
158	DRG-targeted helper-dependent adenoviruses mediate selective gene delivery for therapeutic rescue of sensory neuronopathies in mice. Journal of Clinical Investigation, 2009, 119, 2100-112.	8.2	31
159	The function of long non-coding RNAs in vascular biology and disease. Vascular Pharmacology, 2019, 114, 23-30.	2.1	30
160	How do microRNAs affect vascular smooth muscle cell biology?. Current Opinion in Lipidology, 2012, 23, 405-411.	2.7	29
161	Protective role of chaperone-mediated autophagy against atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121133119.	7.1	29
162	Inhibition of In-Stent Stenosis by Oral Administration of Bindarit in Porcine Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2448-2454.	2.4	28

#	Article	IF	CITATIONS
163	Regulation and Function of miRâ€⊋14Âin Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 109-117.	1.7	28
164	αvβ3 Integrin Is Required for Efficient Infection of Epithelial Cells with Human Adenovirus Type 26. Journal of Virology, 2019, 93, .	3.4	27
165	Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Frontiers in Physiology, 2020, 11, 579892.	2.8	27
166	AAV-based gene transfer. Current Opinion in Molecular Therapeutics, 2003, 5, 367-75.	2.8	27
167	Potential Applications of Tissue Inhibitor of Metalloproteinase (TIMP) Overexpression For Cancer Gene Therapy. Advances in Experimental Medicine and Biology, 2002, 465, 469-483.	1.6	26
168	Targeting non-coding RNA for the therapy of renal disease. Current Opinion in Pharmacology, 2016, 27, 70-77.	3.5	26
169	Interactions of adenovirus vectors with blood: implications for intravascular gene therapy applications. Current Opinion in Molecular Therapeutics, 2008, 10, 439-48.	2.8	26
170	Prevention of vein graft failure: potential applications for gene therapy. Cardiovascular Research, 1997, 35, 442-450.	3.8	25
171	Adenovirus mediated gene delivery of tissue inhibitor of metalloproteinases-3 induces death in retinal pigment epithelial cells. British Journal of Ophthalmology, 2002, 86, 97-101.	3.9	25
172	Neutrophil Proteinases in Hydrochloric Acid- and Endotoxin-Induced Acute Lung Injury: Evaluation of Interstitial Protease Activity by in situ Zymography. Laboratory Investigation, 2002, 82, 133-145.	3.7	25
173	Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis. Journal of Gene Medicine, 2004, 6, 1228-1237.	2.8	25
174	Prevention of coronary in-stent restenosis and vein graft failure: Does vascular gene therapy have a role?. , 2012, 136, 23-34.		25
175	Pseudotyping the adenovirus serotype 5 capsid with both the fibre and penton of serotype 35 enhances vascular smooth muscle cell transduction. Gene Therapy, 2013, 20, 1158-1164.	4.5	25
176	Efficient Transduction of Primary Vascular Cells by the Rare Adenovirus Serotype 49 Vector. Human Gene Therapy, 2015, 26, 312-319.	2.7	25
177	MRI and CT coronary angiography in survivors of COVID-19. Heart, 2022, 108, 46-53.	2.9	25
178	Simple Methods for Preparing Recombinant Adenoviruses for High-Efficiency Transduction of Vascular Cells. , 1999, 30, 271-284.		24
179	Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control. Gene Therapy, 2004, 11, 1296-1300.	4.5	24
180	Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovascular Research, 2022, 118, 2960-2972.	3.8	24

#	Article	IF	CITATIONS
181	Transduction of Liver Metastases After Intravenous Injection of Ad5/35 or Ad35 Vectors With and Without Factor X-Binding Protein Pretreatment. Human Gene Therapy, 2009, 20, 621-629.	2.7	23
182	Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature. FEBS Letters, 2009, 583, 2100-2107.	2.8	23
183	Gene therapy for cardiovascular disease: Perspectives and potential. Vascular Pharmacology, 2013, 58, 174-181.	2.1	23
184	Sorsby's fundus dystrophy mutant tissue inhibitors of metalloproteinase-3 induce apoptosis of retinal pigment epithelial and MCF-7 cells. FEBS Letters, 2002, 529, 281-285.	2.8	22
185	Manganese-enhanced MRI of the myocardium. Heart, 2019, 105, 1695-1700.	2.9	22
186	The flt-1 promoter for transcriptional targeting of teratocarcinoma. Cancer Research, 2002, 62, 1271-4.	0.9	22
187	Derivation of Vascular Endothelial Cells from Human Embryonic Stem Cells Under GMP-Compliant Conditions: Towards Clinical Studies in Ischaemic Disease. Journal of Cardiovascular Translational Research, 2012, 5, 605-617.	2.4	21
188	A Gli(1)ttering Role for Perivascular Stem Cells in Blood Vessel Remodeling. Cell Stem Cell, 2016, 19, 563-565.	11.1	21
189	Progression and regression of left ventricular hypertrophy and myocardial fibrosis in a mouse model of hypertension and concomitant cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 57.	3.3	21
190	Gene Therapy for Cardiovascular Disease. Journal of Biomedicine and Biotechnology, 2003, 2003, 138-148.	3.0	20
191	Performance of AAV8 vectors expressing human factor IX from a hepatic-selective promoter following intravenous injection into rats. Genetic Vaccines and Therapy, 2008, 6, 9.	1.5	20
192	The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery. Expert Opinion on Drug Delivery, 2014, 11, 1795-1813.	5.0	19
193	Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovascular Research, 2023, 119, 6-27.	3.8	19
194	Therapeutic angiogenesis in diabetic apolipoprotein E-deficient mice using bone marrow cells, functional hemangioblasts and metabolic intervention. Atherosclerosis, 2010, 209, 403-414.	0.8	18
195	Serotype Chimeric and Fiber-Mutated Adenovirus Ad5/19p-HIT for Targeting Renal Cancer and Untargeting the Liver. Human Gene Therapy, 2009, 20, 611-620.	2.7	17
196	Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56. Journal of General Virology, 2018, 99, 135-147.	2.9	17
197	Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine, 2022, 78, 103982.	6.1	17
198	FMS mutations in patients following cytotoxic therapy for lymphoma. Leukemia Research, 1995, 19, 309-318.	0.8	16

#	Article	IF	CITATIONS
199	Integrase-Deficient Lentiviral Vectors Mediate Efficient Gene Transfer to Human Vascular Smooth Muscle Cells with Minimal Genotoxic Risk. Human Gene Therapy, 2012, 23, 1247-1257.	2.7	16
200	The relevance of coagulation factor X protection of adenoviruses in human sera. Gene Therapy, 2016, 23, 592-596.	4.5	16
201	Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research, 2022, 118, 1004-1019.	3.8	16
202	Targets for gene therapy of vein grafts. Current Opinion in Cardiology, 1999, 14, 489.	1.8	16
203	[10] Use of phage display to identify novel peptides for targeted gene therapy. Methods in Enzymology, 2002, 346, 157-176.	1.0	15
204	Development and Use of Gene Transfer for Treatment of Cardiovascular Disease. Journal of Cardiac Surgery, 2002, 17, 543-548.	0.7	15
205	APOE ε3 Gene Transfer Attenuates Brain Damage after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 477-487.	4.3	15
206	Vascular-Targeting Antioxidant Therapy in a Model of Hypertension and Stroke. Journal of Cardiovascular Pharmacology, 2010, 56, 642-650.	1.9	15
207	Identification of novel small molecule inhibitors of adenovirus gene transfer using a high throughput screening approach. Journal of Controlled Release, 2013, 170, 132-140.	9.9	15
208	MicroRNA regulation of endothelial homeostasis and commitment—implications for vascular regeneration strategies using stem cell therapies. Free Radical Biology and Medicine, 2013, 64, 52-60.	2.9	15
209	Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovascular Research, 2022, 118, 1667-1679.	3.8	15
210	Identification and characterization of small-molecule ligands that maintain pluripotency of human embryonic stem cells. Biochemical Society Transactions, 2010, 38, 1058-1061.	3.4	14
211	MicroRNAs regulating cell pluripotency and vascular differentiation. Vascular Pharmacology, 2011, 55, 69-78.	2.1	14
212	Transient but Not Genetic Loss of miRâ€451 is Protective in the Development of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 840-850.	1.7	14
213	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	2.6	14
214	miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization. JCI Insight, 2020, 5, .	5.0	14
215	Opportunities for gene therapy in preventing vein graft failure after coronary artery bypass surgery. Diabetes, Obesity and Metabolism, 2006, 8, 119-124.	4.4	13
216	Mouse adenovirus type 1 and human adenovirus type 5 differ in endothelial cell tropism and liver targeting. Journal of Gene Medicine, 2009, 11, 119-127.	2.8	13

#	Article	IF	CITATIONS
217	Profiling of transcriptional and epigenetic changes during directed endothelial differentiation of human embryonic stem cells identifies FOXA2 as a marker of early mesoderm commitment. Stem Cell Research and Therapy, 2013, 4, 36.	5.5	13
218	Biological consequences of a point mutation at codon 969 of the FMS gene. Leukemia Research, 1998, 22, 365-372.	0.8	12
219	Metalloproteinase Inhibition Has Differential Effects on Alloimmunity, Autoimmunity, and Histopathology in the Transplanted Lung. Transplantation, 2007, 83, 799-808.	1.0	12
220	Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today: Technologies, 2008, 5, e107-e115.	4.0	12
221	Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile. Journal of Cardiothoracic Surgery, 2013, 8, 183.	1.1	12
222	Is MicroRNA-376c a Biomarker or Mediator of Preeclampsia?. Hypertension, 2013, 61, 767-769.	2.7	12
223	Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction <i>In Vitro</i> in the Presence of Mouse Serum. Journal of Virology, 2017, 91, .	3.4	12
224	PET Cell Tracking Using 18F-FLT is Not Limited by Local Reuptake of Free Radiotracer. Scientific Reports, 2017, 7, 44233.	3.3	12
225	Deficiency of myeloid PHD proteins aggravates atherogenesis via macrophage apoptosis and paracrine fibrotic signalling. Cardiovascular Research, 2022, 118, 1232-1246.	3.8	12
226	Improved gene delivery to human saphenous vein cells and tissue using a peptide-modified adenoviral vector. Genetic Vaccines and Therapy, 2004, 2, 14.	1.5	11
227	Vector Systems for Prenatal Gene Therapy: Principles of Adenovirus Design and Production. Methods in Molecular Biology, 2012, 891, 55-84.	0.9	11
228	miRNA Overexpression Induces Cardiomyocyte Proliferation In Vivo. Molecular Therapy, 2013, 21, 497-498.	8.2	11
229	Retargeting Adenovirus Serotype 48 Fiber Knob Domain by Peptide Incorporation. Human Gene Therapy, 2014, 25, 385-394.	2.7	11
230	Impaired vascular function and repair in patients with premature coronary artery disease. European Journal of Preventive Cardiology, 2015, 22, 1557-1566.	1.8	11
231	Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells. PLoS ONE, 2018, 13, e0195116.	2.5	11
232	Nuclear S-nitrosylation impacts tissue regeneration in zebrafish. Nature Communications, 2021, 12, 6282.	12.8	11
233	Novel vectors forin vivogene delivery to vascular tissue. Expert Opinion on Biological Therapy, 2007, 7, 809-821.	3.1	10
234	The use of tissue inhibitors of matrix metalloproteinases to increase the efficacy of a tumor necrosis factor/interferonl ³ antitumor therapy. Cancer Gene Therapy, 2007, 14, 372-379.	4.6	10

#	Article	IF	CITATIONS
235	FX and Host Defense Evasion Tactics by Adenovirus. Molecular Therapy, 2013, 21, 1109-1111.	8.2	10
236	What matters in Cardiovascular Research? Scientific discovery driving clinical delivery. Cardiovascular Research, 2018, 114, 1565-1568.	3.8	10
237	Substantial Dysregulation of miRNA Passenger Strands Underlies the Vascular Response to Injury. Cells, 2019, 8, 83.	4.1	10
238	Manganese-enhanced T1 mapping to quantify myocardial viability: validation with 18F-fluorodeoxyglucose positron emission tomography. Scientific Reports, 2020, 10, 2018.	3.3	10
239	Heartening Results: The CUPID Gene Therapy Trial for Heart Failure. Molecular Therapy, 2011, 19, 1181-1182.	8.2	9
240	MicroRNA 21 "Shapes―Vascular Smooth Muscle Behavior Through Regulating Tropomyosin 1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1941-1942.	2.4	9
241	Did Dendritic Cell Activation, Induced by Adenovirus-Antibody Complexes, Play a Role in the Death of Jesse Gelsinger?. Molecular Therapy, 2020, 28, 704-706.	8.2	9
242	Antagonism of miRNA in heart failure: first evidence in human. European Heart Journal, 2021, 42, 189-191.	2.2	9
243	The Influence of the LINC00961/SPAAR Locus Loss on Murine Development, Myocardial Dynamics, and Cardiac Response to Myocardial Infarction. International Journal of Molecular Sciences, 2021, 22, 969.	4.1	9
244	Assessment of stunned and viable myocardium using manganese-enhanced MRI. Open Heart, 2021, 8, e001646.	2.3	9
245	Fli1 ⁺ cells transcriptional analysis reveals an Lmo2–Prdm16 axis in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
246	Enhancement of lipopolysaccharide-stimulated JNK activity in rat aortic smooth muscle cells by pharmacological and adenovirus-mediated inhibition of inhibitory kappa B kinase signalling. British Journal of Pharmacology, 2003, 139, 1041-1049.	5.4	8
247	Efficient isolation of peptide ligands for the endothelial cell protein C receptor (EPCR) using candidate receptor phage display biopanning. Peptides, 2005, 26, 1264-1269.	2.4	8
248	Tissue inhibitor of metalloproteinases-2 improves antitumor efficacy of a replicating adenovirus in vivo. Cancer Biology and Therapy, 2006, 5, 1647-1653.	3.4	8
249	Hopx and the Cardiomyocyte Parentage. Molecular Therapy, 2015, 23, 1420-1422.	8.2	8
250	Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8+ effector recruitment to mucosal tissues. Nature Communications, 2019, 10, 2214.	12.8	8
251	Retargeting FX-binding-ablated HAdV-5 to vascular cells by inclusion of the RGD-4C peptide in hexon hypervariable region 7 and the HI loop. Journal of General Virology, 2016, 97, 1911-1916.	2.9	8
252	Allelic loss of the FMS gene in acute myeloid leukaemia. Leukemia Research, 1997, 21, 919-923.	0.8	7

#	Article	IF	CITATIONS
253	Modifications of the radiosensitivity of a renal cancer cell line as a consequence of stable TIMP-1 overexpression. International Journal of Radiation Biology, 2007, 83, 13-25.	1.8	7
254	The Role of miRNA in Stem Cell Pluripotency and Commitment to the Vascular Endothelial Lineage. Microcirculation, 2012, 19, 196-207.	1.8	7
255	Human Adenovirus Serotype 5 Is Sensitive to IgM-Independent Neutralization In Vitro and In Vivo. Viruses, 2019, 11, 616.	3.3	7
256	Matrix metalloproteinase and tissue inhibitor of metalloproteinase regulation of the invasive potential of a metastatic renal cell line. Biochemical Society Transactions, 1997, 25, 147S-147S.	3.4	6
257	Targeting AAV vectors. Molecular Therapy, 2003, 7, 433-434.	8.2	6
258	<i>Erythro</i> -9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells. Biochemical Journal, 2010, 432, 575-599.	3.7	6
259	Gene therapy and coronary artery bypass grafting: current perspectives. Current Opinion in Molecular Therapeutics, 2006, 8, 288-94.	2.8	6
260	Gene Transfer to the Vasculature. Molecular Biotechnology, 2002, 22, 153-163.	2.4	5
261	Targeting gene therapy vectors to the vascular endothelium. Current Atherosclerosis Reports, 2003, 5, 163-170.	4.8	5
262	A new "lnc―between non-coding RNA and cardiac regeneration. Cardiovascular Research, 2018, 114, 1569-1570.	3.8	5
263	Novel Transcript Discovery Expands the Repertoire of Pathologically-Associated, Long Non-Coding RNAs in Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 1484.	4.1	5
264	Human AdV-20-42-42, a Promising Novel Adenoviral Vector for Gene Therapy and Vaccine Product Development. Journal of Virology, 2021, 95, e0038721.	3.4	5
265	Cene therapy for bypass graft failure and restenosis. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2002, 32, 389-391.	0.3	4
266	Dysregulation of cadherins in the intercalated disc of the spontaneously hypertensive stroke-prone rat. Journal of Molecular and Cellular Cardiology, 2010, 48, 1121-1128.	1.9	4
267	MicroRNA Delivery Strategies to the Lung in a Model of Pulmonary Hypertension. Methods in Molecular Biology, 2017, 1521, 325-338.	0.9	4
268	In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications. Viruses, 2021, 13, 1483.	3.3	4
269	Adenoviral Vectors for Gene Therapy. Molecular Biotechnology, 2003, 25, 101-102.	2.4	3
270	Adenovirus Toxicity and Tropism In Vivo: Not as Simple as A,B,C (or D,E,F). Molecular Therapy, 2007, 15, 2061-2062.	8.2	3

#	Article	IF	CITATIONS
271	Efficient Vascular Endothelial Gene Transfer Following Intravenous Adenovirus Delivery. Molecular Therapy, 2008, 16, 1904-1905.	8.2	3
272	Impact of BREXIT on UK Gene and Cell Therapy: The Need for Continued Pan-European Collaboration. Human Gene Therapy, 2016, 27, 653-655.	2.7	3
273	Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified Tropism <i> In Vitro</i> and <i> In Vivo</i> . Human Gene Therapy, 2004, 15, 1054-1064.	2.7	3
274	History of Wrist Arthroscopy. Journal of Wrist Surgery, 2022, 11, 096-119.	0.7	3
275	A novel CSF-1 binding factor in a patient in complete remission following cytotoxic therapy for lymphoma. British Journal of Haematology, 1995, 89, 219-222.	2.5	2
276	Gene Transfer to the Vasculature: Historical Perspective and Implications for Future Research Objectives. , 2001, 52, 219-231.		2
277	In Vivo Biopanning: A Methodological Approach to Identifying Novel Targeting Ligands for Delivery of Biological Agents to the Vasculature. , 2005, 108, 395-414.		2
278	Adenovirus-Based Vectors: Maximizing Opportunities and Optimizing a Rich Diversity of Vectors for Gene-Based Therapy. Human Gene Therapy, 2014, 25, 255-256.	2.7	2
279	Lost in Translation: Progress and Challenges in Advanced Therapies to Treat CVDs. Molecular Therapy, 2021, 29, 426-427.	8.2	2
280	Development of Targeted Viral Vectors for Cardiovascular Gene Therapy. , 2003, 25, 15-49.		2
281	376. Hepatic Tropism of Adenoviral Type 5 Vectors Can Be Mediated by Multiple Coagulation Factors. Molecular Therapy, 2006, 13, S143.	8.2	1
282	Shedding Light on Tumor Targeting by Adenovirus. Molecular Therapy, 2007, 15, 841-842.	8.2	1
283	Moving Forward on Shifting Sands: Ethical Regulation of Gene Therapy Clinical Trials in the United Kingdom. Molecular Therapy, 2013, 21, 715-716.	8.2	1
284	Micro(RNA) management of smooth muscle cell phenotype and response to vascular injury: FigureÂ1. Cardiovascular Research, 2015, 107, 403-406.	3.8	1
285	Unravelling atherosclerotic heterogeneity by single cell RNA sequencing. Current Opinion in Lipidology, 2018, 29, 488-489.	2.7	1
286	MicroRNA and LncRNA in the Vascular System. , 2019, , 149-158.		1
287	Localization of Long Noncoding in Formalin-Fixed, Paraffin-Embedded Vascular Tissue Using In Situ Hybridization. Methods in Molecular Biology, 2022, 2419, 659-670.	0.9	1
288	Cutting a path to effective delivery of genome engineering machinery. Cardiovascular Research, 2022, ,	3.8	1

#	Article	IF	CITATIONS
289	117. HSPG Binding Properties of Adeno- Associated Virus Retargeting Mutants and Consequences for Their In Vivo Tropism. Molecular Therapy, 2006, 13, S48.	8.2	0
290	21. Peptide-Targeted Ad19p-Based Adenoviral Vectors for Renal Gene Delivery. Molecular Therapy, 2006, 13, S9.	8.2	0
291	25. Development and Characterization of Viral Vectors with High Specificity for Atherosclerotic Plaques. Molecular Therapy, 2006, 13, S11.	8.2	0
292	Adenoviral Vectors. , 2010, , 21-36.		0
293	MiR-145: A Role In The Development Of Pulmonary Arterial Hypertension. , 2012, , .		0
294	Role of miRNA in differentiation of human ES cells to vascular endothelium. Vascular Pharmacology, 2012, 56, 309-310.	2.1	0
295	STABILISING SUPPRESSOR OF CYTOKINE SIGNALLING 3 (SOCS3) EXPRESSION TO LIMIT NEO-INTIMAL HYPERPLASIA. Heart, 2014, 100, A4.1-A4.	2.9	0
296	Editorial overview: New technologies. Current Opinion in Pharmacology, 2015, 24, vii-viii.	3.5	0
297	Atherosclerosis development. Current Opinion in Lipidology, 2017, 28, 520-521.	2.7	0
298	191â€Role of mir-214 in angiotensin ii induced hypertensive heart disease. Heart, 2017, 103, A130.2-A131.	2.9	0
299	P3â€Î±7 nicotinic acetylcholine receptor expression in vascular cells during normoxia and hypoxia. , 2019, , .		0
300	OP9â€Single Cell RNA-sequencing reveals novel targets with a potential role in vascular regeneration in the ischaemic adult heart. , 2020, , .		0
301	Tissue-selective endothelial arousal revealed by vascular endothelial growth factor gene transfer. Cardiovascular Research, 2021, 117, 18-20.	3.8	0
302	Gene and Cell Therapy for Inherited and Acquired Immune Deficiency. Human Gene Therapy, 2021, 32, 1-3.	2.7	0
303	Jumping on base editing to repair the diseased cardiovascular system <i>in vivo</i> . Cardiovascular Research, 2021, 117, e46-e48.	3.8	0
304	Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified Tropism In Vitro and In Vivo. Human Gene Therapy, 2004, .	2.7	0
305	Luciferin detection after intra-nasal vector delivery is improved by intra-nasal rather than intra-peritoneal luciferin administration Human Gene Therapy, 2008, .	2.7	0

Gene Delivery to Cardiovascular Tissue. , 2009, , 25-54.

#	Article	IF	CITATIONS
307	Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches. , 2011, , 159-179.		0
308	Capsid Modification Strategies for Detargeting Adenoviral Vectors. Methods in Molecular Biology, 2014, 1089, 45-59.	0.9	0
309	Targeting Degradome Genes via Engineered Viral Vectors. , 0, , 877-894.		0