Izelmar Todero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870803/publications.pdf

Version: 2024-02-01

840585 940416 25 285 11 16 citations h-index g-index papers 25 25 25 292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Weed control by metabolites produced from <i>Diaporthe schini</i> . Environmental Technology (United Kingdom), 2022, 43, 139-148.	1.2	12
2	The Genus Phoma: A Review of Its Potential Bioactivities, Implications, and Prospects., 2022,, 221-242.		О
3	Estimation of Bioethanol, Biohydrogen, and Chemicals Production from Biomass Wastes in Brazil. Clean - Soil, Air, Water, 2022, 50, .	0.7	3
4	Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. Environmental Technology (United Kingdom), 2021, 42, 1392-1401.	1.2	8
5	Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech, 2021, 11, 284.	1.1	3
6	Production of bioemulsifying compounds from Phoma dimorpha using agroindustrial residues as additional carbon sources. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102079.	1.5	3
7	Extraction and characterization of polysaccharide-enriched fractions from Phoma dimorpha mycelial biomass. Bioprocess and Biosystems Engineering, 2021, 44, 769-783.	1.7	9
8	Concentration of exopolysaccharides produced by <i>Fusarium fujikuroi</i> and application of bioproduct as an effective bioherbicide. Environmental Technology (United Kingdom), 2020, 41, 2742-2749.	1.2	12
9	An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Critical Reviews in Biotechnology, 2020, 40, 1059-1080.	5.1	37
10	Effects of ultrasound on submerged fermentation for producing antioxidant metabolites from Botryosphaeria dothidea. Brazilian Journal of Chemical Engineering, 2020, 37, 475-484.	0.7	4
11	Use of compressed fluids in the recovery of pecan nut cake oil: Influence of extraction conditions on yield and extract quality. Journal of Supercritical Fluids, 2020, 161, 104820.	1.6	7
12	Efeito de metabólitos secundários produzidos por Phoma dimorpha sobre a germinação e crescimento de sementes de diferentes espécies vegetais. Acta Iguazu, 2020, 9, 109-121.	0.2	1
13	Powder containing biomolecules from Diaporthe schini for weed control. Environmental Technology (United Kingdom), 2020, , 1-10.	1.2	4
14	Supercritical CO2 extraction of compounds from different aerial parts of Senecio brasiliensis: Mathematical modeling and effects of parameters on extract quality. Journal of Supercritical Fluids, 2019, 153, 104589.	1.6	15
15	Oil yields, protein contents, and cost of manufacturing of oil obtained from different hybrids and sowing dates of canola. Journal of Environmental Chemical Engineering, 2019, 7, 102972.	3. 3	18
16	Production of cutinase by solid-state fermentation and its use as adjuvant in bioherbicide formulation. Bioprocess and Biosystems Engineering, 2019, 42, 829-838.	1.7	10
17	Extracts from Lupinus albescens: antioxidant power and antifungal activity in vitro against phytopathogenic fungi. Environmental Technology (United Kingdom), 2019, 40, 1668-1675.	1.2	12
18	Concentration of metabolites from Phoma sp. using microfiltration membrane for increasing bioherbicidal activity. Environmental Technology (United Kingdom), 2019, 40, 2364-2372.	1.2	13

#	Article	IF	CITATIONS
19	Ultrasound Technology Applied to Enhance Enzymatic Hydrolysis of Brewer's Spent Grain and its Potential for Production of Fermentable Sugars. Waste and Biomass Valorization, 2019, 10, 2157-2164.	1.8	16
20	VALORIZATION OF Solanum viarum DUNAL BY EXTRACTING BIOACTIVE COMPOUNDS FROM ROOTS AND FRUITS USING ULTRASOUND AND SUPERCRITICAL CO2. Brazilian Journal of Chemical Engineering, 2019, 36, 1689-1702.	0.7	3
21	Importance of Lupinus albescens in agricultural and food-related areas: A review. 3 Biotech, 2018, 8, 448.	1.1	4
22	Formulation of a bioherbicide with metabolites from Phoma sp Scientia Horticulturae, 2018, 241, 285-292.	1.7	36
23	Transformation of residual starch from brewer's spent grain into fermentable sugars using supercritical technology. Journal of Supercritical Fluids, 2018, 140, 85-90.	1.6	13
24	Extraction and composition of extracts obtained from Lupinus albescens using supercritical carbon dioxide and compressed liquefied petroleum gas. Journal of Supercritical Fluids, 2017, 128, 395-403.	1.6	23
25	Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech, 2016, 6, 230.	1.1	19