David Dbv Baglietto-Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870759/publications.pdf

Version: 2024-02-01

61 papers

3,565 citations

30 h-index 55 g-index

74 all docs

74 docs citations

times ranked

74

5282 citing authors

#	Article	IF	CITATIONS
1	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	3.5	11
2	Spatial coding defects of hippocampal neural ensemble calcium activities in the triple-transgenic Alzheimer's disease mouse model. Neurobiology of Disease, 2022, 162, 105562.	4.4	12
3	Editorial: Metabolic Alterations in Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 2022, 14, 833109.	3.4	2
4	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	4.1	36
5	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
6	Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Scientific Data, 2021, 8, 270.	5 . 3	138
7	SPG302 Reverses Synaptic and Cognitive Deficits Without Altering Amyloid or Tau Pathology in a Transgenic Model of Alzheimer's Disease. Neurotherapeutics, 2021, 18, 2468-2483.	4.4	5
8	Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Frontiers in Neuroscience, 2021, 15, 752594.	2.8	15
9	Distinct diseaseâ€sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathology, 2020, 30, 345-363.	4.1	49
10	Reply to Peng and Zhao: Loss of endocytic protein TOM1 in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3917-3919.	7.1	0
11	Amyloid propagation in a sporadic model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045657.	0.8	1
12	Model organism development and evaluation for lateâ€onset Alzheimer's disease: MODELâ€AD. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12110.	3.7	63
13	Editorial: Risk Factors for Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 124.	3.4	5
14	miRâ€181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13118.	6.7	42
15	Intra- and extracellular \hat{I}^2 -amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936.	3.3	12
16	Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21198-21206.	7.1	24
17	Tau underlies synaptic and cognitive deficits for type 1, but not type 2 diabetes mouse models. Aging Cell, 2019, 18, e12919.	6.7	19
18	Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Scientific Reports, 2019, 9, 1311.	3.3	24

#	Article	IF	CITATIONS
19	P4â€522: TYPE 2 DIABETES MELLITUS INDUCES TAUâ€INDEPENDENT COGNITIVE AND SYNAPTIC DEFICITS IN A MOUSE MODEL. Alzheimer's and Dementia, 2019, 15, P1514.	0.8	1
20	Astrocytes: From the Physiology to the Disease. Current Alzheimer Research, 2019, 16, 675-698.	1.4	20
21	Past to Future: What Animal Models Have Taught Us About Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S365-S378.	2.6	22
22	Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 11.	10.8	260
23	P2â€172: THE DYSREGULATION OF TOM1 IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P734.	0.8	0
24	P3â€173: IMPACT OF SYNAPTIC REGULATORS' LOSS ON ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2 14, P1134.	.018,	0
25	O1â€01â€04: HAβâ€KI: A KNOCKâ€IN MOUSE MODEL FOR SPORADIC ALZHEIMER'S DISEASE. Alzheimer's and D 2018, 14, P213.	ementia, 0.8	1
26	P1â€131: MODELâ€AD: LATEâ€ONSET ALZHEIMER'S DISEASE MODELS. Alzheimer's and Dementia, 2018, 14, P32	2 lo.8	0
27	P1â€130: MODELâ€AD: CHARACTERIZATION OF FAMILIAL AD MODELS (5XFAD, APP/PS1, HTAU, 3XTGâ€AD). Alzheimer's and Dementia, 2018, 14, P321.	0.8	1
28	Impaired <scp>AMPA</scp> signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell, 2018, 17, e12791.	6.7	58
29	Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends in Neurosciences, 2017, 40, 347-357.	8.6	327
30	Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer's disease. Scientific Reports, 2017, 7, 10085.	3.3	34
31	[P1–107]: APPKlâ€HaβWT: A NOVEL TRANSGENIC MOUSE TO MODEL SPORADIC ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P281.	0.8	0
32	Diabetes and Alzheimer's disease crosstalk. Neuroscience and Biobehavioral Reviews, 2016, 64, 272-287.	6.1	161
33	Animal Models of Neurodegenerative Diseases. , 2016, , .		0
34	Shortâ€ŧerm modern lifeâ€ŀike stress exacerbates Aβâ€pathology and synapse loss in 3xTgâ€ <scp>AD</scp> mic Journal of Neurochemistry, 2015, 134, 915-926.	e _{3.9}	74
35	Repeated cognitive stimulation alleviates memory impairments in an Alzheimer's disease mouse model. Brain Research Bulletin, 2015, 117, 10-15.	3.0	33
36	Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL- $1\hat{1}^2$ in the aged hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5078-87.	7.1	95

#	Article	IF	CITATIONS
37	Upregulation of miR-181 Decreases c-Fos and SIRT-1 in the Hippocampus of 3xTg-AD Mice. Journal of Alzheimer's Disease, 2014, 42, 1229-1238.	2.6	77
38	\hat{l}_{\pm} 7 Nicotinic Receptor Agonist Enhances Cognition in Aged 3xTg-AD Mice with Robust Plaques and Tangles. American Journal of Pathology, 2014, 184, 520-529.	3.8	68
39	Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiology of Disease, 2014, 62, 407-415.	4.4	19
40	Genetic Ablation of Tau Mitigates Cognitive Impairment Induced by Type 1 Diabetes. American Journal of Pathology, 2014, 184, 819-826.	3.8	41
41	Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience, 2014, 259, 214-222.	2.3	31
42	Restoration of Lipoxin A4 Signaling Reduces Alzheimer's Disease-Like Pathology in the 3xTg-AD Mouse Model. Journal of Alzheimer's Disease, 2014, 43, 893-903.	2.6	76
43	Hippocampal Adaptive Response Following Extensive Neuronal Loss in an Inducible Transgenic Mouse Model. PLoS ONE, 2014, 9, e106009.	2.5	8
44	In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer's disease pathology. Acta Neuropathologica Communications, 2013, 1, 73.	5.2	33
45	Mifepristone Alters Amyloid Precursor Protein Processing to Preclude Amyloid Beta and Also Reduces Tau Pathology. Biological Psychiatry, 2013, 74, 357-366.	1.3	87
46	Aspirin-Triggered Lipoxin A4 Stimulates Alternative Activation of Microglia and Reduces Alzheimer Disease–Like Pathology in Mice. American Journal of Pathology, 2013, 182, 1780-1789.	3.8	139
47	Calpain Inhibitor A-705253 Mitigates Alzheimer's Disease–Like Pathology and Cognitive Decline in Aged 3xTgAD Mice. American Journal of Pathology, 2012, 181, 616-625.	3.8	80
48	Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathologica, 2012, 123, 53-70.	7.7	179
49	Loss of Muscarinic M1 Receptor Exacerbates Alzheimer's Disease–Like Pathology and Cognitive Decline. American Journal of Pathology, 2011, 179, 980-991.	3.8	100
50	The Role of Tau in Alzheimer's Disease and Related Disorders. CNS Neuroscience and Therapeutics, 2011, 17, 514-524.	3.9	195
51	Activity-Dependent Neuroprotective Protein (ADNP) Expression in the Amyloid Precursor Protein/Presenilin 1 Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2010, 41, 114-120.	2.3	34
52	Calretinin Interneurons are Early Targets of Extracellular Amyloid-β Pathology in PS1/AβPP Alzheimer Mice Hippocampus. Journal of Alzheimer's Disease, 2010, 21, 119-132.	2.6	81
53	Extracellular Amyloid- \hat{l}^2 and Cytotoxic Glial Activation Induce Significant Entorhinal Neuron Loss in Young PS1M146L/APP751SL Mice. Journal of Alzheimer's Disease, 2009, 18, 755-776.	2.6	40
54	Inflammatory Response in the Hippocampus of PS1 _{M146L} /APP _{751SL} Mouse Model of Alzheimer's Disease: Age-Dependent Switch in the Microglial Phenotype from Alternative to Classic. Journal of Neuroscience, 2008, 28, 11650-11661.	3 . 6	340

#	Article	IF	CITATIONS
55	Glutaminase activity is confined to the mantle of the islets of Langerhans. Biochimie, 2007, 89, 1366-1371.	2.6	9
56	Inter-individual variability in the expression of the mutated form of hPS1M146L determined the production of $A\hat{l}^2$ peptides in the PS1xAPP transgenic mice. Journal of Neuroscience Research, 2007, 85, 787-797.	2.9	9
57	Molecular and cellular characterization of the ageâ€related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. Journal of Neurochemistry, 2007, 103, 984-996.	3.9	67
58	Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1×APP transgenic model of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1658-1672.	3.1	175
59	Postnatal development of the $\hat{l}\pm 1$ containing GABAA receptor subunit in rat hippocampus. Developmental Brain Research, 2004, 148, 129-141.	1.7	27
60	Expression of $\hat{l}\pm 5$ GABAA receptor subunit in developing rat hippocampus. Developmental Brain Research, 2004, 151, 87-98.	1.7	31
61	Segregation of two glutaminase isoforms in islets of Langerhans. Biochemical Journal, 2004, 381, 483-487.	3.7	15