
David Dbv Baglietto-Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammatory Response in the Hippocampus of PS1 _{M146L} /APP _{751SL} Mouse Model of Alzheimer's Disease: Age-Dependent Switch in the Microglial Phenotype from Alternative to Classic. Journal of Neuroscience, 2008, 28, 11650-11661.	3.6	340
2	Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends in Neurosciences, 2017, 40, 347-357.	8.6	327
3	Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 11.	10.8	260
4	The Role of Tau in Alzheimer's Disease and Related Disorders. CNS Neuroscience and Therapeutics, 2011, 17, 514-524.	3.9	195
5	Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathologica, 2012, 123, 53-70.	7.7	179
6	Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1×APP transgenic model of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1658-1672.	3.1	175
7	Diabetes and Alzheimer's disease crosstalk. Neuroscience and Biobehavioral Reviews, 2016, 64, 272-287.	6.1	161
8	Aspirin-Triggered Lipoxin A4 Stimulates Alternative Activation of Microglia and Reduces Alzheimer Disease–Like Pathology in Mice. American Journal of Pathology, 2013, 182, 1780-1789.	3.8	139
9	Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Scientific Data, 2021, 8, 270.	5.3	138
10	Loss of Muscarinic M1 Receptor Exacerbates Alzheimer's Disease–Like Pathology and Cognitive Decline. American Journal of Pathology, 2011, 179, 980-991.	3.8	100
11	Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1β in the aged hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5078-87.	7.1	95
12	Mifepristone Alters Amyloid Precursor Protein Processing to Preclude Amyloid Beta and Also Reduces Tau Pathology. Biological Psychiatry, 2013, 74, 357-366.	1.3	87
13	Calretinin Interneurons are Early Targets of Extracellular Amyloid-β Pathology in PS1/AβPP Alzheimer Mice Hippocampus. Journal of Alzheimer's Disease, 2010, 21, 119-132.	2.6	81
14	Calpain Inhibitor A-705253 Mitigates Alzheimer's Disease–Like Pathology and Cognitive Decline in Aged 3xTgAD Mice. American Journal of Pathology, 2012, 181, 616-625.	3.8	80
15	Upregulation of miR-181 Decreases c-Fos and SIRT-1 in the Hippocampus of 3xTg-AD Mice. Journal of Alzheimer's Disease, 2014, 42, 1229-1238.	2.6	77
16	Restoration of Lipoxin A4 Signaling Reduces Alzheimer's Disease-Like Pathology in the 3xTg-AD Mouse Model. Journal of Alzheimer's Disease, 2014, 43, 893-903.	2.6	76
17	Shortâ€term modern lifeâ€like stress exacerbates Aβâ€pathology and synapse loss in 3xTgâ€ <scp>AD</scp> mic Journal of Neurochemistry, 2015, 134, 915-926.	e. 3.9	74
18	α7 Nicotinic Receptor Agonist Enhances Cognition in Aged 3xTg-AD Mice with Robust Plaques and Tangles. American Journal of Pathology, 2014, 184, 520-529.	3.8	68

#	Article	IF	CITATIONS
19	Molecular and cellular characterization of the ageâ€related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. Journal of Neurochemistry, 2007, 103, 984-996.	3.9	67
20	Model organism development and evaluation for lateâ€onset Alzheimer's disease: MODELâ€AD. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12110.	3.7	63
21	Impaired <scp>AMPA</scp> signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell, 2018, 17, e12791.	6.7	58
22	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
23	Distinct diseaseâ€sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathology, 2020, 30, 345-363.	4.1	49
24	miRâ€181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13118.	6.7	42
25	Genetic Ablation of Tau Mitigates Cognitive Impairment Induced by Type 1 Diabetes. American Journal of Pathology, 2014, 184, 819-826.	3.8	41
26	Extracellular Amyloid-β and Cytotoxic Glial Activation Induce Significant Entorhinal Neuron Loss in Young PS1M146L/APP751SL Mice. Journal of Alzheimer's Disease, 2009, 18, 755-776.	2.6	40
27	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	4.1	36
28	Activity-Dependent Neuroprotective Protein (ADNP) Expression in the Amyloid Precursor Protein/Presenilin 1 Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2010, 41, 114-120.	2.3	34
29	Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer's disease. Scientific Reports, 2017, 7, 10085.	3.3	34
30	In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer's disease pathology. Acta Neuropathologica Communications, 2013, 1, 73.	5.2	33
31	Repeated cognitive stimulation alleviates memory impairments in an Alzheimer's disease mouse model. Brain Research Bulletin, 2015, 117, 10-15.	3.0	33
32	Expression of α5 GABAA receptor subunit in developing rat hippocampus. Developmental Brain Research, 2004, 151, 87-98.	1.7	31
33	Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience, 2014, 259, 214-222.	2.3	31
34	Postnatal development of the α1 containing GABAA receptor subunit in rat hippocampus. Developmental Brain Research, 2004, 148, 129-141.	1.7	27
35	Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21198-21206.	7.1	24
36	Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Scientific Reports, 2019, 9, 1311.	3.3	24

#	Article	IF	CITATIONS
37	Past to Future: What Animal Models Have Taught Us About Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S365-S378.	2.6	22
38	Astrocytes: From the Physiology to the Disease. Current Alzheimer Research, 2019, 16, 675-698.	1.4	20
39	Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiology of Disease, 2014, 62, 407-415.	4.4	19
40	Tau underlies synaptic and cognitive deficits for type 1, but not type 2 diabetes mouse models. Aging Cell, 2019, 18, e12919.	6.7	19
41	Segregation of two glutaminase isoforms in islets of Langerhans. Biochemical Journal, 2004, 381, 483-487.	3.7	15
42	Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Frontiers in Neuroscience, 2021, 15, 752594.	2.8	15
43	Intra- and extracellular β-amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936.	3.3	12
44	Spatial coding defects of hippocampal neural ensemble calcium activities in the triple-transgenic Alzheimer's disease mouse model. Neurobiology of Disease, 2022, 162, 105562.	4.4	12
45	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	3.5	11
46	Glutaminase activity is confined to the mantle of the islets of Langerhans. Biochimie, 2007, 89, 1366-1371.	2.6	9
47	Inter-individual variability in the expression of the mutated form of hPS1M146L determined the production of Al ² peptides in the PS1xAPP transgenic mice. Journal of Neuroscience Research, 2007, 85, 787-797.	2.9	9
48	Hippocampal Adaptive Response Following Extensive Neuronal Loss in an Inducible Transgenic Mouse Model. PLoS ONE, 2014, 9, e106009.	2.5	8
49	Editorial: Risk Factors for Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 124.	3.4	5
50	SPG302 Reverses Synaptic and Cognitive Deficits Without Altering Amyloid or Tau Pathology in a Transgenic Model of Alzheimer's Disease. Neurotherapeutics, 2021, 18, 2468-2483.	4.4	5
51	Editorial: Metabolic Alterations in Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 2022, 14, 833109.	3.4	2
52	O1â€01â€04: HAβâ€KI: A KNOCKâ€IN MOUSE MODEL FOR SPORADIC ALZHEIMER'S DISEASE. Alzheimer's and D 2018, 14, P213.	ementia, 0.8	1
53	P1â€┨30: MODELâ€AD: CHARACTERIZATION OF FAMILIAL AD MODELS (5XFAD, APP/PS1, HTAU, 3XTGâ€AD). Alzheimer's and Dementia, 2018, 14, P321.	0.8	1
54	P4â€522: TYPE 2 DIABETES MELLITUS INDUCES TAUâ€INDEPENDENT COGNITIVE AND SYNAPTIC DEFICITS IN A MOUSE MODEL. Alzheimer's and Dementia, 2019, 15, P1514.	0.8	1

#	Article	IF	CITATIONS
55	Amyloid propagation in a sporadic model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045657.	0.8	1
56	[P1–107]: APPKIâ€HaβWT: A NOVEL TRANSGENIC MOUSE TO MODEL SPORADIC ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P281.	0.8	0
57	P2â€172: THE DYSREGULATION OF TOM1 IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P734.	0.8	0
58	P3â€173: IMPACT OF SYNAPTIC REGULATORS' LOSS ON ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2 14, P1134.	018, 0.8	0
59	P1â€131: MODELâ€AD: LATEâ€ONSET ALZHEIMER'S DISEASE MODELS. Alzheimer's and Dementia, 2018, 14, P32	210.8	0
60	Reply to Peng and Zhao: Loss of endocytic protein TOM1 in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3917-3919.	7.1	0
61	Animal Models of Neurodegenerative Diseases. , 2016, , .		ο